KSRP Promotes the Maturation of a Group of miRNA Precuresors

  • Michele Trabucchi
  • Paola Briata
  • Witold Filipowicz
  • Andres Ramos
  • Roberto Gherzi
  • Michael G. Rosenfeld
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 700)


microrNNA (mirNAs) are small noncoding RNAs that down-regulate gene expression by reducing stability and/or translation of target mRNAs. In animals, miRNAs arise from sequential processing of hairpin primary transcripts by two rNase III domain-containing enzymes, namely Drosha and Dicer, to generate a mature form of about 22 nucleotides. In this chapter we discuss our latest fndings indicating that KSRP is an integral component of both Drosha and Dicer complexes. KSRP binds to the terminal loop sequence of a subset of miRNA precursors promoting their maturation. our data indicate that the terminal loop is a pivotal structure where activators of miRNA processing as well as repressors of miRNA processing act in a coordinated way to convert cellular signals into changes in miRNA expression processing. This uncovers a new level of complexity of miRNA mechanisms for gene expression regulation.


miRNA Precursor miRNA Biogenesis miRNA Processing Terminal Loop microRNA Biogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis BN, Hata A. Regulation of microRNA Biogenesis: A miRNA of mechanisms. Cell Commun Signal 2009; 7(1):18.PubMedCrossRefGoogle Scholar
  2. 2.
    Winter J, Jung S, Keller S et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11(3):228–234.PubMedCrossRefGoogle Scholar
  3. 3.
    Morlando M, Ballarino M, Gromak N et al. Primary microRNA transcripts are processed cotranscriptionally. Nat Struct Mol Biol 2008; 15(9):902–909.PubMedCrossRefGoogle Scholar
  4. 4.
    Ballarino M, Pagano F, Girardi E et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol cell Biol 2009; 29(20):5632–5638.PubMedCrossRefGoogle Scholar
  5. 5.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2):102–114.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu X, Fortin K, Mourelatos Z. microRNAs: biogenesis and molecular functions. Brain Pathol 2008; 18(1):113–121.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmittgen TD. Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med 2008; 12(5B):1811–1819.PubMedCrossRefGoogle Scholar
  8. 8.
    Davis BN, Hilyard AC, Lagna G et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454(7200):56–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Fukuda T, Yamagata K, Fujiyama S et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9(5):604–611.PubMedCrossRefGoogle Scholar
  10. 10.
    Guil S, Caceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 2007; 14(7):591–596.PubMedCrossRefGoogle Scholar
  11. 11.
    Obernosterer G, Leuschner PJ, Alenius M et al. Post-transcriptional regulation of microRNA expression. Rna 2006; 12(7):1161–1167.PubMedCrossRefGoogle Scholar
  12. 12.
    Trabucchi M, Briata P, Garcia-Mayoral M et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459(7249):1010–1014.PubMedCrossRefGoogle Scholar
  13. 13.
    Viswanathan SR, Daley GQ, Gregory RL. Selective blockade of microRNA processing by Lin28. Science 2008; 320(5872):97–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Suzuki HI, Yamagata K, Sugimoto K et al. Modulation of microRNA processing by p53. Nature 2009; 460(7254):529–533.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamagata K, Fujiyama S, Ito S et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol cell 2009; 36(2):340–347.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen CY, Gherzi R, Ong SE et al. AU binding proteins recruit the exosome to degrade ARE-containing mrRNAs. Cell 2001; 107(4):451–464.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia-Mayoral MF, Hollingworth D, Masino L et al. The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mrNA degradation. Structure 2007; 15(4):485–498.PubMedCrossRefGoogle Scholar
  18. 18.
    Gherzi R, Lee KY, Briata P et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004; 14(5):571–583.PubMedCrossRefGoogle Scholar
  19. 19.
    Kroll TT, Zhao WM, Jiang C et al. A homolog of FBP2/KSRP binds to localized mRNAs in Xenopus oocytes. Development 2002; 129(24):5609–5619.PubMedCrossRefGoogle Scholar
  20. 20.
    Min H, Turck CW, Nikolic JM et al. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 1997; 11(8):1023–1036.PubMedCrossRefGoogle Scholar
  21. 21.
    Ruggiero T, Trabucchi M, De Santa F et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. Faseb J 2009; 23(9):2898–2908.PubMedCrossRefGoogle Scholar
  22. 22.
    Michlewski G, Guil S, Semple CA et al. Post-transcriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008; 32(3):383–393.PubMedCrossRefGoogle Scholar
  23. 23.
    Ruggiero T, Trabucchi M, Ponassi M et al. Identifcation of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol Biol 2007; 8:28.PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Mayoral MF, Diaz-Moreno I, Hollingworth D et al. The sequence selectivity of KSRP explains its fexibility in the recognition of the RNA targets. Nucleic Acids Res 2008.Google Scholar
  25. 25.
    Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. Rna 2008; 14(8):1539–1549.PubMedCrossRefGoogle Scholar
  26. 26.
    Piskounova E, Viswanathan SR, Janas M et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 2008; 283(31):21310–21314.PubMedCrossRefGoogle Scholar
  27. 27.
    Rybak A, Fuchs H, Smirnova L et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10(8):987–993.PubMedCrossRefGoogle Scholar
  28. 28.
    Wulczyn FG, Smirnova L, Rybak A et al. Post-transcriptional regulation of the let-7 microrNa during neural cell specifcation. Faseb J 2007; 21(2):415–426.PubMedCrossRefGoogle Scholar
  29. 29.
    Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16(10):1021–1025.PubMedCrossRefGoogle Scholar
  30. 30.
    Heo I, Joo C, Kim YK et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through microRNA uridylation. Cell 2009; 138(4):696–708.PubMedCrossRefGoogle Scholar
  31. 31.
    Lehrbach NJ, Armisen J, Lightfoot HL et al. LIN-28 and the poly(u) polymerase PuP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 2009; 16(10):1016–1020.PubMedCrossRefGoogle Scholar
  32. 32.
    Sakamoto S, Aoki K, Higuchi T et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009; 29(13):3754–3769.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen JF, Mandel EM, Thomson JM et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38(2):228–233.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HK, Lee YS, Sivaprasad U et al. Muscle-specifc microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006; 174(5):677–687.PubMedCrossRefGoogle Scholar
  35. 35.
    Allemand E, Guil S, Myers M et al. Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc Natl Acad Sci USA 2005; 102(10):3605–3610.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimada N, Rios I, Moran H et al. p38 MAP kinase-dependent regulation of the expression level and subcellular distribution of heterogeneous nuclear ribonucleoprotein A1 and its involvement in cellular senescence in normal human fIbroblasts. RNA Biol 2009; 6(3).Google Scholar
  37. 37.
    Briata P, forcales SV, Ponassi M et al. p38-dependent phosphorylation of the mRNa decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 2005; 20(6):891–903.PubMedCrossRefGoogle Scholar
  38. 38.
    Diaz-Moreno I, Hollingworth D, Frenkiel TA et al. Phosphorylation-mediated unfolding of a KH domain regulates kSRP localization via 14-3-3 binding. Nat Struct Mol Biol 2009; 16(3):238–246.PubMedCrossRefGoogle Scholar
  39. 39.
    Gherzi R, Trabucchi M, Ponassi M et al. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol 2006; 5(1):e5.PubMedCrossRefGoogle Scholar
  40. 40.
    Thomson JM, Newman M, Parker JS et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20(16):2202–2207.PubMedCrossRefGoogle Scholar
  41. 41.
    Lu J, Getz G, Miska EA et al. microRNA expression profles classify human cancers. Nature 2005; 435(7043):834–838.PubMedCrossRefGoogle Scholar
  42. 42.
    Kumar MS, Lu J, Mercer KL;. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39(5):673–677.PubMedCrossRefGoogle Scholar
  43. 43.
    Guo J, Li ZC, Feng YH. Expression and activation of the reprogramming transcription factors. Biochem Biophys Res Commun 2009; 390(4):1081–1086.PubMedCrossRefGoogle Scholar
  44. 44.
    Heo I, Joo C, Cho J et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol cell 2008; 32(2):276–284.PubMedCrossRefGoogle Scholar
  45. 45.
    Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008; 14(9):400–409.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michele Trabucchi
    • 1
  • Paola Briata
  • Witold Filipowicz
  • Andres Ramos
  • Roberto Gherzi
  • Michael G. Rosenfeld
  1. 1.Hughes Medical Institute, Department and School of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations