Measuring Oxygen in Living Tissue: Intravascular, Interstitial, and “Tissue” Oxygen Measurements

  • David F. Wilson
  • Olga S. Finikova
  • Artem Y. Lebedev
  • Sophia Apreleva
  • Anna Pastuszko
  • William M. F. Lee
  • Sergei A. Vinogradov
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 701)


Oxygen dependent quenching of phosphorescence has been used to measure the oxygen pressure in both the vasculature of the microcirculation and the interstitial spaces of resting muscle tissue. Oxygen sensitive molecules were either dissolved in the blood (intravascular space) or micro-injected into the interstitial space and the distributions, histograms, of the oxygen pressure were measured. The mean oxygen pressures are higher in the blood than in the interstitial space but the oxygen pressures in the lowest 10% of the two spaces were not significantly different, indicating there is minimal (< 1 mm Hg) oxygen gradient between the two spaces in the capillary bed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC (2001) Dynamics of microvascular oxygen pressure across the rest-exercise transition in rat skeletal muscle. Resp. Physiol. 126(1): 53-63.CrossRefGoogle Scholar
  2. 2.
    Dewhirst MW, Ong ET, Braun RD, Smith B, Klitzman B, Evans SM, and Wilson DF (1999) Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia, Br. J. Cancer 79: 1717-1722.PubMedCrossRefGoogle Scholar
  3. 3.
    Buerk DG, Tsai AG, Intaglietta M, and Johnson PC (1998) Comparing tissue PO2 measurements by recessed microelectrode and phosphorescence quenching. Adv. Exp. Biol. Med. 454: 367-374.CrossRefGoogle Scholar
  4. 4.
    Dunphy I,Vinogradov SA, and Wilson DF(2002) Oxyphor R2 andG2: Phosphors formeasuring oxygen by oxygen dependent quenching of phosphorescence. Analy. Biochem. 310: 191-198.CrossRefGoogle Scholar
  5. 5.
    Huang Ch-Ch, Lejevadi NS, Tammela O, Pastuszko A, Delivoria-Papadopoulos M, and Wilson DF. (1994) Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure. Neurochem. Res. 19: 640-655.Google Scholar
  6. 6.
    Johnson PC, Vandegriff K, Tsai AG, and Intaglietta M (2005) Effect of acute hypoxia on microcirculatory and tissue oxygen levels in rat cremaster muscle. J. Appl. Physiol. 98: 1177- 1184.PubMedCrossRefGoogle Scholar
  7. 7.
    Kripke ML. (1979) Speculations on the role of ultraviolet radiation in the development of malignant melanoma. J. Natl. Cancer Inst. 63: 541-548.PubMedGoogle Scholar
  8. 8.
    Poole DC, Behnke BJ, McDonough P, McAllister RM, and Wilson DF. (2004) Measurement of muscle microvascular oxygen pressures: compartmentalization of phosphorescent probe. Microcirculation. 11(4): 317-326.PubMedCrossRefGoogle Scholar
  9. 9.
    Richmond KN, Shonat RD, Lynch RM, and Johnson PC. (1999) Critical PO2 of skeletalmuscle in vivo. Am. J. Physiol. Heart Circ. Physiol. 277: H1831–H1840.Google Scholar
  10. 10.
    Rietveld IB, Kim E, and Vinogradov, SA. (2003) Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging. Tetrahedron 59: 3821-3831.CrossRefGoogle Scholar
  11. 11.
    Rozhkov V,Wilson DF, and Vinogradov SA. (2002) Phosphorescent Pd porphyrin-dendrimers: Tuning core accessibility by varying the hydrophobicity of the dendritic matrix. Macromolecules 35: 1991-1993.CrossRefGoogle Scholar
  12. 12.
    Lebedev, AY. Cheprakov, AV. Sakadzic, S. Boas, DA.Wilson, DF. and Vinogradov, SA. (2009) Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems. ACS Appl.Mater. Interfaces, 1, 1292-1304.PubMedCrossRefGoogle Scholar
  13. 13.
    RumseyWL, Pawlowski M, Lejavardi N, andWilson DF. (1994) Oxygen pressure distribution in the heart in vivo and evaluation of the ischemic “border zone.” Am. J. Physiol. 266(4 Pt 2): H1676-80.Google Scholar
  14. 14.
    Rumsey WL, Vanderkooi JM, and Wilson DF. (1988) Imaging of phosphorescence: A novel method for measuring the distribution of oxygen in perfused tissue. Science 241: 1649-1651.PubMedCrossRefGoogle Scholar
  15. 15.
    Shonat RD and Johnson PC. (1997) Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study. Am. J. Physiol. Heart Circ. Physiol. 272: H2233–H2240.Google Scholar
  16. 16.
    Shonat, RD,Wilson DF, Riva CE, and Pawlowski M. (1992) Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method. Appl. Optics 31: 3711-3718.CrossRefGoogle Scholar
  17. 17.
    Sinaasappel M, Donkersloot C, van Bommel J, and Ince C. (1999) PO2 measurements in the rat intestinal microcirculation. Am. J. Physiol. 276: G1515-20.PubMedGoogle Scholar
  18. 18.
    Vanderkooi JM,Maniara G, Green TJ, andWilson DF. (1987) An optical method for measurement of dioxygen concentration based on quenching of phosphorescence, J. Biol. Chem. 262: 5476-5482.PubMedGoogle Scholar
  19. 19.
    Vinogradov SA, Fernandez-Seara MA, Dugan BW, and Wilson DF (2001) Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples, Rev. Sci. Instruments 72, 3396-3406.CrossRefGoogle Scholar
  20. 20.
    Vinogradov SA, Lo L-W, Jenkins WT, Evans SM, Koch C, and Wilson DF. (1996) Noninvasive imaging of the distribution of oxygen in tissue in vivo using near infra-red phosphors, Biophys. J. 70: 1609-1617.PubMedCrossRefGoogle Scholar
  21. 21.
    Vinogradov SA and Wilson DF. (1994) Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements. J. Chem. Soc., Perkin Trans. II, 103-111.Google Scholar
  22. 22.
    Vinogradov SA and Wilson DF. (1994) Phosphorescence lifetime analysis with a quadratic programming algorithmfor determining quencher distributions in heterogeneous systems. Biophys. J. 67: 2048-2059.PubMedCrossRefGoogle Scholar
  23. 23.
    Vinogradov SA and Wilson DF (2000) Recursive maximum entropy algorithm and its application to the luminescence lifetime distribution recovery. Appl. Spectroscopy 54: 849-855.CrossRefGoogle Scholar
  24. 24.
    Wilson DF, Rumsey WL, Green TJ, and Vanderkooi JM. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen. J. Biol. Chem. 263: 2712-2718.PubMedGoogle Scholar
  25. 25.
    Wilson DF Vinogradov SA Grosul P Vaccarezza MN Kuroki A and Bennett J. (2005) Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence lifetime imaging. Appl. Optics 44: 1-10.CrossRefGoogle Scholar
  26. 26.
    Ziemer L Lee WMF Vinogradov SA Sehgal C and Wilson DF. (2005) Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J. Appl. Physiol. 98: 1503-1510.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David F. Wilson
    • 1
  • Olga S. Finikova
    • 1
  • Artem Y. Lebedev
    • 1
  • Sophia Apreleva
    • 1
  • Anna Pastuszko
    • 1
  • William M. F. Lee
    • 2
  • Sergei A. Vinogradov
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations