Advertisement

In Vivo Assessment of Oxygen Consumption via Deuterium Magnetic Resonance

  • Gheorghe D. MateescuEmail author
  • Allen Ye
  • Chris A. Flask
  • Bernadette Erokwu
  • Jeffrey L. Duerk
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 701)

Abstract

We present a novel approach to simultaneously measure, in vivo, noninvasively, glucose and oxygen consumption via Deuterium Magnetic Resonance (DMR). Mice are administered deuteriated glucose by intravenous injection. The rate of formation of nascent (deuteriated) mitochondrial water is then measured via DMR. The rate of glucose metabolism and oxygen utilization is assessed by tracking their separate peaks in DMR spectra during dynamic scanning. Further studies will aim to validate these results by comparison with in vivo 17O-MRI (mitochondrial function), 13C-MRI and 19FDG-PET (glucose metabolism) and ex vivo 1H- and 2H-MR, as well as mass spectrometry.1

Keywords

Nuclear Magnetic Resonance Spectroscopy Cerebral Oxygen Consumption Deuterium Nuclear Magnetic Resonance Proton Nuclear Magnetic Resonance Study Ferrous Porphyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hogeboom GH, SchneiderWC, Palade GE (1948) Cytochemical studies of mammalian tissues I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulatematerial. JBiol Chem 172:619–628 and references cited thereinGoogle Scholar
  2. 2.
    Kennedy EP and Lehninger AL (1949) Oxidation of fatty acids and tricarboxilic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem 179:957–972PubMedGoogle Scholar
  3. 3.
    Chance B and Williams GR (1955) Respiratory enzymes in oxidative phosphorylation IV. The respiratory chain. J Biol Chem 172:429–438 and references cited thereinGoogle Scholar
  4. 4.
    Hoppel C and Cooper C (1968) The action of digitonin on rat liver mitochondria: the effects on enzyme content. Biochem J 107:367–375PubMedGoogle Scholar
  5. 5.
    Goff H and La Mar GN (1977) High-spin ferrous porphyrin complexes as models for deoxymyoglobin and hemoglobin. A proton nuclear magnetic resonance study. J Am Chem Soc 99:6599–6606Google Scholar
  6. 6.
    TevaldMA, Lanza IR, Befroy DE,Kent-Brown JA (2009) Intramyocellular oxygenation during ischemic muscle contraction in vivo. Eur J Appl Physiol 106:333–343CrossRefGoogle Scholar
  7. 7.
    Chance B, Im J,Nioka S,KushmerickM(2006) Skeletalmuscle energetics withPMR: personal views and historic perspectives. NMR Biomed 19:904–926 and literature cited thereinGoogle Scholar
  8. 8.
    Arias-Mendoza F, Payne GS, Zakian KL et al (2006) In vivo 31P MR spectral patterns and reproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed 19:504–512PubMedCrossRefGoogle Scholar
  9. 9.
    Golman K. in ‘t Zandt R, Thaning M (2006) Real-time metabolic imaging. PNAS 103:11270–11275 and literature cited thereinGoogle Scholar
  10. 10.
    Yu X, White LT, Doumen C et al (1995) Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts. Biophys J 69:20902102Google Scholar
  11. 11.
    Mateescu GD, Yvars GM, Dular T (1987) Oxygen-17 magnetic resonance imaging. Proc Soc Magn Reson Med 6:929Google Scholar
  12. 12.
    Mateescu GD, Yvars GM, Dular T (1988) Water, ions, and O-17/proton magnetic resonance imaging. In: Läuger P, Packer L, Vasilescu V (eds) Water and Ions in Biological Systems. Birkhauser, Boston, 239-250.Google Scholar
  13. 13.
    MateescuGD,YvarsGM, PazaraDI,AlldridgeNA, LaManna JC, LustDW,MattinglyM,Kuhn W (1989) Combined 17O-1H magnetic resonance imaging in plants, animals, and materials.x In: Baillie TA, Jones JR (eds) Synthesis and applications of isotopically labeled compounds. Elsevier, 499-508.Google Scholar
  14. 14.
    Arai T, Nakao S, Mori K, Ishimori K, Morishima I, Miyazawa T, Fritz-Zieroth B (1990) Cerebral oxygen utilization analyzed by the use of O-17 and its MR. Biochem Biophys Res Comm 169:153-158PubMedCrossRefGoogle Scholar
  15. 15.
    Mateescu GD (1991) From materials testing to brain-function testing. Spectroscopy International 3:14-18Google Scholar
  16. 16.
    Mateescu GD, LaManna JC, LustDW,Mars L, Tseng J (1991) Oxygen-17 magnetic resonance: in vivo detection of nascent mitochondrial water in animals breathing 17O-enriched air. Proc Soc Magn Reson Med 10:1031Google Scholar
  17. 17.
    Pekar J,Ligetti L, Ruttner Z,Lyon R, SinnwellT, van GelderenP, Fiat D,MoonenCT,McLaughlin A (1991) In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance Imaging. Magn Reson Med 21:313–319Google Scholar
  18. 18.
    Mateescu GD, Fercu D (1993) Interleave 17O/31P MRS: novel approach for in vivo determination of defects in oxidative phosphorylation (mitochondrial metabolism). Proc Soc Magn Reson Med 12:110Google Scholar
  19. 19.
    Fiat D, Kang S (1993) Determination of the rate of cerebral oxygen consumption and regional blood flow by non-invasive 17O in vivo NMR spectroscopy and MRI. Neurol Res 15:7–22PubMedGoogle Scholar
  20. 20.
    Mateescu GD, CabreraME (1997) In vivo 17Omagnetic resonance spectroscopy: determination of temperature effects on metabolic rates (Q10 factor). Adv Exp Med Biol 411:585–590Google Scholar
  21. 21.
    Kwong KK, Hopkins AL, Belliveau JW et al (1991) Proton NMR Imaging of cerebral blood flow using H17 2 O. Magn Reson Med 2:154–158 and references cited thereinGoogle Scholar
  22. 22.
    Mateescu GD, Cabrera M, Fercu D (1998) 17O and 31P magnetic resonance imaging and spectroscopy: in vivo investigations of cell bioenergetics. In: Bluemler P, Bluemich B, Botto R, Fukushima E (eds) Spatially Resolved Magnetic Resonance. Wiley-VCH, Weinheim, New York, 421-429CrossRefGoogle Scholar
  23. 23.
    Zhu X-H, Zhang N, Zhang Y et al (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18:83–103PubMedCrossRefGoogle Scholar
  24. 24.
    Weiss BC, Margolis D, Burgess SC et al (2004) Glucose production pathways by 2H and 13C NMR in patients with HIV-associated lipoatrophy Magn Reson Med 51:649–654, and references cited thereinGoogle Scholar
  25. 25.
    Aguayo JB, GamesikMP, Dick JD (1988) High resolution deuterium NMR studies of bacterial metabolism. J Biol Chem 263:19552–19557PubMedGoogle Scholar
  26. 26.
    Roger O, Lavigne R, Mahmoud M et al (2004 Quantitatve 2H NMR at natural abundance can distinguish the pathway used for glucose fermentation by lactic acid bacteria. J Biol Chem 279:24923–24928PubMedCrossRefGoogle Scholar
  27. 27.
    Gjedde A (2009) Variable ATP yield and uncoupling of oxygen consumption in human brain, this volumeGoogle Scholar
  28. 28.
    Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 263:30409–30412CrossRefGoogle Scholar
  29. 29.
    Wallace DC (1999) Mitochondrial Diseases in Man and Mouse. Science, 283:1482-1488PubMedCrossRefGoogle Scholar
  30. 30.
    Pedersen LG, Bartolotti L, Li L (2006) Deuterium and its role in the machinery of evolution. J Theor Biol 238:914-918 and references cited thereinGoogle Scholar
  31. 31.
    Kushner DJ, Baker A, Dunstall TG (1999) Pharmacological uses and perspectives of heavy water and deuteriated compounds. Can J Physiol Pharmacol 77:79–88PubMedCrossRefGoogle Scholar
  32. 32.
    Landau BR, Spring-Robinson CL, Muzic RF Jr, et al (2007) 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am J Physiol Endocrinol Metab 293(1):E237-45. Epub 2007 Apr 3.PMID: 17405828Google Scholar
  33. 33.
    Gjedde A (1995) Glucose metabolism. In: Wagner HN Jr, Szabo Z, Buchanan JW (eds) Principles of Nuclear Medicine, 2nd edn. Saunders, Philadelphia: 54-71Google Scholar
  34. 34.
    VafaeeM, GjeddeA (2004) Spatially dissociated flow-metabolism coupling in brain activation. NeuroImage 21:507-515CrossRefGoogle Scholar
  35. 35.
    Burgess SC, Nuss M, Chandramouli V et al (2003) Analysis of gluconeogenic pathways in vivo by distribution of 2H in plasma glucose: comparison of nuclear magnetic resonance and mass spectrometry. Analytical Biochemistry. doi:10.1016/S0003-2697(03)00158-1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gheorghe D. Mateescu
    • 2
    • 3
    Email author
  • Allen Ye
    • 1
  • Chris A. Flask
    • 2
  • Bernadette Erokwu
    • 2
  • Jeffrey L. Duerk
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Case Center for Imaging ResearchCase Western Reserve UniversityClevelandUSA
  3. 3.Department of ChemistryCase Western Reserve UniversityClevelandUSA

Personalised recommendations