Cross-Nationally Comparative Results on Teachers’ Qualification, Beliefs, and Practices

  • Svenja VielufEmail author
  • Eckhard Klieme


A growing body of research compares educational processes and outcomes cross-nationally, but up to now there are only few studies on teachers and their expertise involving more than a handful of countries. Drawing on data from the OECD-Teaching and Learning International Survey the present chapter aims at filling this research gap. It compares different aspects of teacher quality – namely mathematics teachers’ qualification, beliefs about the nature of teaching and learning and classroom teaching practices – across 23 countries. Results of descriptive and multivariate analyses show the three facets and their subscales to be distinct but interrelated across countries. At the same time significant differences in profiles are observed cross-nationally. The findings suggest both, global and country-specific effects on teacher quality.


Mathematics teachers Teacher quality Teacher beliefs Conceptions of teaching Teaching practices International comparisons Cross-cultural 


  1. Alisch, L.-M. (1981). Zu einer kognitiven Theorie der Lehrerhandlung. In M. Hofer (Hrsg.), Informationsverarbeitung und Entscheidungsverhalten von Lehrern. Beiträge zur Handlungstheorie des Unterrichts (pp. 78–108). München: Urban und Schwarzenberg.Google Scholar
  2. An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school mathematics teachers in China and the U.S. Journal of Mathematics Teacher Education, 28, 145–172.CrossRefGoogle Scholar
  3. An, S., Kulm, G., Wu, Z., Ma, F., & Wang, L. (2006). The impact of cultural differences on middle school mathematics teachers beliefs in the U.S. and China. In F. K. Leung & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study. New York: Spinger.Google Scholar
  4. Ball, D. L., & Hill, H. C. (2008). Measuring teacher quality in practice. In D. H. Gitomer (Ed.), Measurement issues and assessment for teaching quality (pp. 80–98). Thousand Oaks, CA: Sage Publications.Google Scholar
  5. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.CrossRefGoogle Scholar
  6. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., et al. (2009). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180.CrossRefGoogle Scholar
  7. J. P. Becker (Ed.). (1992). Report of U.S.–Japan cross national research on students problem solving behavior. Carbondale: Department of Curriculum, Instruction and Media, Southern Illinois University.Google Scholar
  8. Bennett, W. (1987). Looking at Japanese education: Implications for American education. NASSP Bulletin, 71(499), 102–108.CrossRefGoogle Scholar
  9. Bolam, R., McMahon, A., Stoll, L., Thomas, S., Wallace, M., Greenwood, A., et al. (2005). Creating and sustaining effective professional learning communities (Research Report 637). London: DfES and University of Bristol.Google Scholar
  10. Borko, H., & Putnam, R. T. (1996). Learning to teach. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 673–708). New York: Macmillan Library Reference USA/Simon & Schuster Macmillan.Google Scholar
  11. Bracey, G. (1997). On comparing the incomparable: A response to Baker and Stedman. Educational Researcher, 26(3), 19–26.Google Scholar
  12. Bromme, R. (1997). Kompetenzen, Funktionen und unterrichtliches Handeln des Lehrers. In F. E. Weinert (Hrsg.), Enzyklopädie der Psychologie. Pädagogische Psychologie. Bd 3: Psychologie des Unterrichts und der Schule (pp. 177–212). Göttingen: Hogrefe.Google Scholar
  13. Bromme, R. (2008). Lehrerexpertise. In W. Schneider & M. Hasselhorn (Hrsg.), Handbuch der Pädagogischen Psychologie. (S. 159–167). Göttingen: Hogrefe.Google Scholar
  14. Brophy, J. E. (2000). Teaching: Educational practices series-1. Geneva, Switzerland: International Academy of Education/International Bureau of Education (IAE).Google Scholar
  15. Brophy, J. E., & Good, T. L. (1986). Teacher behaviour and pupil achievement. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 328–375). New York: MacMillan.Google Scholar
  16. Brown, A. L. (1994). The advancement of learning. Educational Researcher, 23(8), 4–12.Google Scholar
  17. Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.Google Scholar
  18. Buczynski, S., & Hansen, C. B. (2010). Impact of professional development on teacher practice: Uncovering connections. Teaching and Teacher Education, 26, 599–607.CrossRefGoogle Scholar
  19. Burstein, L. (Ed.). (1992). The IEA study of mathematics. Vol. 3: Student growth and classroom processes. Oxford: Pergamon Press.Google Scholar
  20. Cai, J. (2006). U.S. and Chinese teachers’ cultural values of representations in mathematics education. In F. K. S. Leung, K.-D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study. New York: Spinger.Google Scholar
  21. Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504.Google Scholar
  22. Cheng, M. M. H., Chan, K.-W., Tang, S. Y. F., & Cheng, A. Y. N. (2009). Pre-service teacher education students’ epistemological beliefs and their conceptions of teaching. Teaching and Teacher Education, 25, 319–327.CrossRefGoogle Scholar
  23. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255.CrossRefGoogle Scholar
  24. Correa, C. A., Perry, M., Sims, L. M., Miller, K. F., & Fang, G. (2008). Connected and culturally embedded beliefs: Chinese and US teachers talk about how their students best learn mathematics. Teaching and Teacher Education, 24, 140–153.CrossRefGoogle Scholar
  25. Creemers, B. P. M., & Kyriakides, L. (2008). The dynamics of educational effectiveness: A contribution to policy, practice, and theory in contemporary schools. London: Routledge.Google Scholar
  26. Darling-Hammond, L. (1999). Teacher quality and student achievement: A review of state policy evidence. Seattle, WA: Center for the Study of Teaching and Policy, University of Washington.Google Scholar
  27. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.Google Scholar
  28. Döbert, H., Klieme, E., & Sroka, W. (Eds.). (2004). Conditions of school performance in seven countries. A quest for understanding the international variation of PISA results. Münster: Waxmann.Google Scholar
  29. Dubberke, T., Kunter, M., McElvany, N., Brunner, M., & Baumert, J. (2008). Lerntheoretische Überzeugungen von Mathematiklehrkräften. Einflüsse auf die Unterrichtsgestaltung und den Lernerfolg von Schülerinnen und Schülern. Zeitschrift für Pädagogische Psychologie, 22(3–4), 193–206.CrossRefGoogle Scholar
  30. Fennema, E., Carpenter, T., & Loef, M. (1990). Teacher belief scale. Cognitively guided instruction project. Madison: University of Wisconsin.Google Scholar
  31. Givvin, K. B., Hiebert, J., Jacobs, J. K., Hollingsworth, H., & Gallimore, R. (2005). Are there national patterns of teaching? Evidence from the TIMSS 1999 video study. Comparative Education Review, 49(3), 311–343.CrossRefGoogle Scholar
  32. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematikdidaktik, 19(1), 3–45.Google Scholar
  33. Hannula, M. S., Kaasila, R., Laine, A., & Pehkonen, E. (2005, February 17–21). The structure of student teacher’s view of mathematics at the beginning of their studies. Proceedings of the 4th congress of the European Society for Research in Mathematics Education, Sant Feliu de Guíxols, Spain. Retrieved October 15, 2009, from
  34. Hanushek, E. A. (2002). Publicly provided education. In A. J. Auerbach & M. Feldstein (Eds.), Handbook of public economics (Vol. 4, pp. 2045–2141). Amsterdam: Elsevier.Google Scholar
  35. Hanushek, E. A., & Rivkin, S. G. (2007). Teacher quality. In E. A. Hanushek & F. Welch (Eds.), Handbook of the economics of education (pp. 1051–1078). Amsterdam: Elsevier.Google Scholar
  36. Helmke, A. (2003). Unterrichtsqualität erfassen, bewerten, verbessern. Seelze: Kallmeyer.Google Scholar
  37. Hiebert, J., Gallimore, R., Garnier, H., Givven, K. B., Hollingsworth, H., Jacobs, J., et al. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington, DC: US Department of Education, National Center for Education Statistics.Google Scholar
  38. Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Charlotte: Information Age.Google Scholar
  39. Holt-Reynolds, D. (1992). Personal history-based beliefs as relevant prior knowledge in course work. American Educational Research Journal, 29, 325–349.Google Scholar
  40. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  41. Ingersoll, R. M. (2003). Out-of-field teaching and the limits of teacher policy. Washington, DC: Center for the Study of Teaching and Policy. Retrieved June 15, 2009, from pubs/143
  42. Inglehart, R., Basàñez, M., Díez-Medrano, J., Halman, M., & Luijkx, R. (Eds.). (2004). Human beliefs and values: A cross-cultural sourcebook based on the 1999–2002 values surveys. Mexico: Siglo XXI.Google Scholar
  43. Kember, D., & Kwan, K.-P. (2000). Lecturers’ approaches to teaching and their relationship to conceptions of good teaching. Instructional Science, 28(5–6), 469–490.CrossRefGoogle Scholar
  44. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  45. Klieme, E., Lipowsky, F., Rakoczy, K., & Ratzka, N. (2006). Qualitätsdimensionen und Wirksamkeit von Mathematikunterricht: Theoretische Grundlagen und ausgewählte Ergebnisse des Projekts ‘Pythagoras’. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule, Abschlussbericht des DFG-Schwerpunktprogramms (pp. 128–146). Münster: Waxmann.Google Scholar
  46. Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study: Investigating effects of teaching and learning in Swiss and German classrooms. In T. Janik & T. Seidel (Eds.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster: Waxmann.Google Scholar
  47. Klieme, E., Schümer, G., & Knoll, S. (2001). Mathematikunterricht in der Sekundarstufe I: Aufgabenkultur und Unterrichtsgestaltung [Mathematics instruction at lower secondary level. Task culture and instructional design]. In Bundesministerium für Bildung und Forschung (BMBF) (Ed.), TIMSS-Impulse für Schule und Unterricht. Forschungsbefunde, Reforminitiativen, Praxisberichte und Video-Dokumente (S. 43–57).Google Scholar
  48. Klieme, E., & Vieluf, S. (2009). Teaching practices, teachers’ beliefs and attitudes. In Organisation for Economic Co-operation and Development (Ed.), Creating effective teaching and learning environments: First results from TALIS. Paris: OECD.Google Scholar
  49. Leder, G., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs: A hidden variable in mathematics education? Dordrecht: Kluwer.Google Scholar
  50. Lee, W. O. (1996). The cultural context for Chinese learners: Conceptions of learning in the Confucian tradition. In D. A. Watkins & J. B. Biggs (Eds.), The Chinese learner: Cultural, psychological, and contextual influences (pp. 25–41). Hong Kong/Melbourne: Comparative Education Research Centre, the University of Hong Kong/Australian Council for Educational Research.Google Scholar
  51. LeTendre, G., Baker, D., Akiba, M., Goesling, B., & Wiseman, A. (2001). Teachers’ work: Institutional isomorphism and cultural variation in the U.S., Germany, and Japan. Educational Researcher, 30(6), 3–50.CrossRefGoogle Scholar
  52. Leuchter, M., Pauli, C., Reusser, K., & Lipowsky, F. (2006). Unterrichtsbezogene Überzeugungen und handlungsleitende Kognitionen von Lehrpersonen. Zeitschrift für Erziehungswissenschaft, 9(4), 562–579.CrossRefGoogle Scholar
  53. Levitt, K. E. (2001). An analysis of elementary teachers’ beliefs regarding the teaching and learning of science. Science Education, 85, 1–22.CrossRefGoogle Scholar
  54. Libman, Z. (2009). Teacher licensing examinations – True progress or illusion? Studies in Educational Evaluation, 35(1), 7–15.CrossRefGoogle Scholar
  55. Lie, S., Linnakylä, P., & Roe, A. (2003). Northern lights on PISA. Unity and diversity in the nordic countries in PISA 2000. Retrieved September 1, 2009, from
  56. Lingbiao, G., & Watkins, D. A. (2001). Towards a model of teaching conceptions of Chinese secondary school teachers of physics. In D. A. Watkins & J. B. Biggs (Eds.), Teaching the Chinese learner: Psychological and pedagogical perspectives. Hong Kong: Comparative Education Research Centre and Australian Council for Educational Research.Google Scholar
  57. Lipowsky, F. (2006). Auf den Lehrer kommt es an. Empirische Evidenzen für Zusammenhänge zwischen Lehrerkompetenzen, Lehrerhandeln und dem Lernen der Schüler. Beiheft der Zeitschrift für Pädagogik, 51, 47–70.Google Scholar
  58. Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19, 527–537.CrossRefGoogle Scholar
  59. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding and fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  60. Marsh, H. W., Martin, A. J., & Hau, K.-T. (2006). A multiple method perspective on self-concept research in educational psychology: A construct validity approach. In M. Eid & E. Diener (Eds.), Handbook of multimethod measurement in psychology (pp. 441–456). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  61. Mayer, R. E. (2004). Should there be a three-strike rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59(1), 14–19.CrossRefGoogle Scholar
  62. Monk, D. H. (1994). Subject matter preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13(2), 125–145.CrossRefGoogle Scholar
  63. Mullis, I. V. S., & Martin, M. O. (2007). TIMSS in perspective: Lessons learned from IEA’s four decades of international mathematics assessments. In T. Loveless (Ed.), Lessons learned. What international assessments tell us about math achievement (pp. 9–36). Washington, DC: Brookings.Google Scholar
  64. Mullis, I. V. S., Martin, M. O., Foy, P., Olson, J. F., Preuschoff, C., Erberber, E., et al. (2008). TIMSS 2007 international mathematics report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  65. Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. TIMSS & PIRLS International Study Center Lynch School of Education, Boston College. Retrieved October 15, 2009, from
  66. Muthén, L. K., & Muthén, B. O. (1997–2008). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  67. Organization for Economic Co-operation and Development (Ed.). (2009). Creating effective teaching and learning environments: First results from TALIS. Paris: OECD.Google Scholar
  68. Organization for Economic Co-operation and Development (Ed.). (2010). TALIS 2008 technical report. Paris: OECD.Google Scholar
  69. Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62, 307–332.Google Scholar
  70. Pehkonen, E. (2004). State-of-the-art in mathematical beliefs research. In M. Niss (Ed.), Proceedings of the 10th international congress on Mathematics Education (ICME-10). Roskilde: Department of Science, Systems and Models, Roskilde University, Denmark.Google Scholar
  71. Peterson, P. L., Fennema, E., Carpenter, T. P., & Loef, M. (1989). Teachers’ pedagogical content beliefs in mathematics. Cognition and Instruction, 6, 1–40.CrossRefGoogle Scholar
  72. Richardson, V. (2003). Preservice teachers’ beliefs. In J. Raths & A. C. McAninch (Eds.), Teacher beliefs and classroom performance: The impact of teacher education. Greenwich, CT: Information Age Publishing.Google Scholar
  73. Schermelleh-Engel, K., & Moosbrugger, H. (2002). Beurteilung der Modellgüte von Strukturgleichungsmodellen. Frankfurt: Arbeiten aus dem Institut für Psychologie der J. W. Goethe-Universität, Heft 4/2002.Google Scholar
  74. Schmidt, W., Tatto, M. T., Bankov, K., Blömeke, S., Cedillo, T., Cogan, L., et al. (2007). The preparation gap: Teacher education for middle school mathematics in six countries (MT21 Repo10, rt). East Lansing, MI: Michigan State University. Retrieved October 2009, from
  75. Schön, D. A. (1983). The reflective practicioner. How professionals think in action. New York: Basic Books.Google Scholar
  76. Seidel, T., Schwindt, K., Rimmele, R., & Prenzel, M. (2008). Konstruktivistische Überzeugungen von Lehrpersonen: Was bedeuten sie für den Unterricht? Zeitschrift für Erziehungswissenschaft (Sonderheft), 9, 259–276.Google Scholar
  77. Seidel, T., & Shavelson, R. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499.CrossRefGoogle Scholar
  78. Shim, S. H. (2008). A philosophical investigation of the role of teachers: A synthesis of Plato, Confucius, Buber, and Freire. Teaching and Teacher Education, 24, 515–535.CrossRefGoogle Scholar
  79. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.Google Scholar
  80. Spindler, G. D., & Spindler, L. (1987). Cultural dialogue and schooling in Schoenhausen and Roseville: A comparative analysis. Anthropology and Education Quarterly, 18(1), 1–16.Google Scholar
  81. Staub, F. C., & Stern, E. (2002). The nature of teachers’ pedagogical content beliefs matters for students’ achievement gains: Quasi-experimental evidence from elementary mathematics. Journal of Educational Psychology, 94(2), 344–355.CrossRefGoogle Scholar
  82. Stigler, J. W., & Hiebert, J. (1999). The teaching gap – Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.Google Scholar
  83. Supovitz, J. A. (2002). Developing communities of instructional practice. Teachers College Record, 104(2), 127–146.Google Scholar
  84. Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching, 37(9), 963–980.CrossRefGoogle Scholar
  85. Tang, T. K. W. (2008). The influence of teacher education on conceptions of teaching and learning. In D. A. Watkins & J. B. Biggs (Eds.), Teaching the Chinese learner: Psychological and pedagogical perspectives. Hong Kong: Comparative Education Research Centre and Australian Council for Educational Research.Google Scholar
  86. Tobias, S., & Duffy, T. M. (Eds.). (2009). Constructivist instruction: Success or failure? New York: Routledge, Taylor & Francis.Google Scholar
  87. Törner, G., & Grigutsch, S. (1994). Mathematische Weltbilder bei Studienanfängern. Eine Erhebung. Journal für Mathematik-Didaktik, 15(3/4), 211–251.Google Scholar
  88. United Nations Educational, Scientific and Cultural Organization. (2006). International Standard Classification of Education (ISCED 1997). Retrieved March 2009, from
  89. Van de Vijver, F. J. R., & Poortinga, Y. H. (1982). Cross-cultural generalization and universality. Journal of Cross-Cultural Psychology, 13, 387–408.CrossRefGoogle Scholar
  90. Vescio, V., Ross, D., & Adams., A. (2008). A review of research on the impact of professional learning communities on teaching practice and student learning. Teaching and Teacher Education, 24, 80–91.CrossRefGoogle Scholar
  91. Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. Review of Educational Research, 63(3), 249–294.Google Scholar
  92. Wilcox-Herzog, A. (2002). Is there a link between teachers’ beliefs and behaviors? Early Education and Development, 13(1), 81–106.CrossRefGoogle Scholar
  93. Wilson, S. M. (1990). The secret garden of teacher education. Phi Delta Kappan, 72, 204–209.Google Scholar
  94. Zhou, Z., Peverly, S. T., & Xin, T. (2006). Knowing and teaching fractions: A cross-cultural study of American and Chinese mathematics teachers. Contemporary Educational Psychology, 31(4), 438–457.CrossRefGoogle Scholar
  95. Zuzovsky, R. (2009). Teachers’ qualifications and their impact on student achievement: Findings from TIMSS 2003 data for Israel. In: International Association for the Evaluation of Educational Achievement (IEA) and Educational Testing Service (ETS) (Eds.), IERI monograph series issues and methodologies in large-scale assessments (Vol. 2). Retrieved June 2, 2009, from Chapter Introduction.pdf

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.German Institute for International Educational ResearchFrankfurtGermany

Personalised recommendations