Bacteriocins from Gram-Negative Bacteria: A Classification?

  • Sylvie RebuffatEmail author


Bacteria produce an arsenal of toxic peptides and proteins, which are termed bacteriocins and play a role in mediating the dynamics of microbial populations and communities. Bacteriocins from Gram-negative bacteria arise mainly from Enterobacteriaceae. They assemble into two main families: high molecular mass modular proteins (30–80 kDa) termed colicins and low molecular mass peptides (between 1 and 10 kDa) termed microcins. The production of colicins is mediated by the SOS response regulon, which plays a role in the response of many bacteria to DNA damages. Microcins are highly stable hydrophobic peptides that are produced under stress conditions, particularly nutrient depletion. Colicins and microcins are found essentially in Escherichia coli, but several other Gram-negative species also produce bacteriocin-like substances. This chapter presents the basis of a classification of colicins and microcins.


Lactic Acid Bacterium Yersinia Pestis Target Bacterium Killing Mechanism Recognition Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, Borukhov S, Wang MD, Severinov K (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14:753–762CrossRefGoogle Scholar
  2. Arnold T, Zeth K, Linke D (2009) Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem 284:6403–6413CrossRefGoogle Scholar
  3. Asensio C, Pérez-Diaz JC, Martinez MC, Baquero F (1976) A new family of low molecular weight antibiotics from enterobacteria. Biochem Biophys Res Commun 69:7–14CrossRefGoogle Scholar
  4. Baquero F, Moreno F (1984) The microcins. FEMS Microbiol Lett 23:117–124CrossRefGoogle Scholar
  5. Barreteau H, Bouhss A, Gérard F, Duché D, Boussaid B, Blanot D, Lloubes R, Mengin-Lecreulx D, Touzé T (2010) Deciphering the catalytic domain of colicin M, a peptidoglycan lipid II degrading enzyme. J Biol Chem 285:12378–12389CrossRefGoogle Scholar
  6. Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061CrossRefGoogle Scholar
  7. Braun V, Patzer SI, Hantke K (2002) Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84:365–380, ReviewCrossRefGoogle Scholar
  8. Braun V, Pilsl H, Gross P (1994) Colicins: structures, modes of action, transfer through membranes and evolution. Arch Microbiol 161:199–206, ReviewCrossRefGoogle Scholar
  9. Bremer E, Middendorf A, Martinussen J, Valentin-Hansen P (1990) Analysis of the tsx gene, which encodes a nucleoside-specific channel-forming protein (Tsx) in the outer membrane of Escherichia coli. Gene 96:59–65CrossRefGoogle Scholar
  10. Carraturo A, Raieta K, Ottaviani D, Russo GL (2006) Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J Appl Microbiol 101:234–241CrossRefGoogle Scholar
  11. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229, ReviewCrossRefGoogle Scholar
  12. Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA (2005) Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Biol Chem 284:6403–6413Google Scholar
  13. Chibber S, Vadehra DV (1986) Purification and characterization of bacteriocin from Klebsiella pneumoniae 158. J Gen Microbiol 132:1051–1054Google Scholar
  14. De Cristobal RE, Solbiati JO, Zenoff AM, Vincent PA, Salomon RA, Yuzenkova J (2006) Microcin J25 uptake: His5 of the MccJ25 lariat ring is involved in interaction with the inner membrane MccJ25 transporter protein SbmA. J Bacteriol 188:3324–3328CrossRefGoogle Scholar
  15. Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2002) Focus on modified microcins: structural features and mechanisms of action. Biochimie 84:511–519, ReviewCrossRefGoogle Scholar
  16. Duché D, Letellier L, Géli V, Bénédetti H, Baty D (1995) Quantification of group A colicin import sites. J Bacteriol 177:4935–4939Google Scholar
  17. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007a) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734, ReviewCrossRefGoogle Scholar
  18. Duquesne S, Petit V, Peduzzi J, Rebuffat S (2007b) Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J Mol Microbiol Biotechnol 13:200–209, ReviewCrossRefGoogle Scholar
  19. Enfedaque J, Ferrer S, Guasch JF, Tomás J, Regué M (1996) Bacteriocin 28b from Serratia ­marcescens N28b: identification of Escherichia coli surface components involved in bacteriocin binding and translocation. Can J Microbiol 42:19–26CrossRefGoogle Scholar
  20. Farkas-Himsley H, Seyfried PL (1962) Lethal biosynthesis of a new antibacterial principle: vibriocin. Nature 193:1193–1194CrossRefGoogle Scholar
  21. Ferber DM, Brubaker RR (1979) Mode of action of pesticin: N-acetylglusaminidase activity. J Bacteriol 139:495–501Google Scholar
  22. Ferguson AD, Deisenhofer J (2002) TonB dependent receptors structural perspectives. Biochim Biophys Acta 1565:318–332CrossRefGoogle Scholar
  23. Fredericq P, Joiris E, Betz-Barreau M, Gratia A (1949) Recherche des germes producteurs de colicines dans les selles de malades atteints de fièvre paratyphoïde B. CR Soc Biol 143:556–559Google Scholar
  24. Gaillard-Gendron S, Vignon D, Cottenceau G, Graber M, Zorn A, van Dorsselaer A, Pons A-M (2000) Isolation, purification and partial amino acid sequence of a highly hydrophobic new microcin named microcin L produced by Escherichia coli. FEMS Microbiol Lett 193:95–98, Erratum in: FEMS Microbiol Lett 2001, 199:151CrossRefGoogle Scholar
  25. Gérard F, Pradel N, Wu LF (2005) Bactericidal activity of colicin V is mediated by an inner ­membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950CrossRefGoogle Scholar
  26. Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244CrossRefGoogle Scholar
  27. Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. CR Soc Biol 93:1041–1042Google Scholar
  28. Guasch JF, Enfedaque J, Ferrer S, Gargallo D, Regué M (1995a) Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Res Microbiol 146:477–483CrossRefGoogle Scholar
  29. Guasch JF, Ferrer S, Enfedaque J, Viejo MB, Regué M (1995b) A 17 kDa outer-membrane protein (Omp4) from Serratia marcescens confers partial resistance to bacteriocin 28b when expressed in Escherichia coli. Microbiology 141:2535–2542CrossRefGoogle Scholar
  30. Gupta RS (1998) What are archaebacteria: life’s third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 29:695–707CrossRefGoogle Scholar
  31. Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA, Wentzell LM, Walsh CT, Maxwell A (2001) The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 307:1223–1234CrossRefGoogle Scholar
  32. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram positive bacteria. Microbiol Rev 59:171–200Google Scholar
  33. Jacob F, Lwoff A, Siminovitch A, Wollman E (1953) Définition de quelque termes relatifs a la lysogénie. Ann Inst Pasteur (Paris) 84:222–224Google Scholar
  34. Jacob F (1954) Biosynthèse induite et mode d’action d’une pyocine, antibiotique de Pseudomonas pyocyanea. Ann Inst Pasteur (Paris) 86:149–160Google Scholar
  35. Jakes KS, Finkelstein A (2009) The colicin Ia receptor Cir is also the translocator for colicin Ia. Mol Microbiol 75:567–578CrossRefGoogle Scholar
  36. Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349CrossRefGoogle Scholar
  37. Konisky J (1982) Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol 36:125–144, ReviewCrossRefGoogle Scholar
  38. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804CrossRefGoogle Scholar
  39. Lloubès R, Cascales E, Walburger A, Bouveret E, Lazdunski C, Bernadac A, Journet L (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529, ReviewCrossRefGoogle Scholar
  40. Lagos R, Wilkens M, Vergara C, Cecchi X, Monasterio O (1993) Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett 321:145–148CrossRefGoogle Scholar
  41. Lazzaroni JC, Dubuisson JF, Vianney A (2002) The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochimie 84:391–397CrossRefGoogle Scholar
  42. de Lorenzo V (1984) Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol 139:72–75CrossRefGoogle Scholar
  43. Mc Call JO, Sizemore RK (1979) Description of a bacteriocinogenic plasmid in Beneckea harveyi. Appl Environ Microbiol 38:974–979Google Scholar
  44. Messi P, Guerrieri E, Bondi M (2003) Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 220:121–125CrossRefGoogle Scholar
  45. Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, Krasheninnikov I, Kolb V, Khmel I, Severinov K (2006) Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J Biol Chem 281:18033–18042CrossRefGoogle Scholar
  46. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:­499–510, ReviewCrossRefGoogle Scholar
  47. Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase ­secondary channel. Mol Cell 14:739–751CrossRefGoogle Scholar
  48. Munoz J, Arias JM, Montoya E (1984) Production and properties of a bacteriocin from Myxococcus coralloides D. J Appl Bacteriol 57:69–74Google Scholar
  49. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656, ReviewCrossRefGoogle Scholar
  50. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32, ReviewGoogle Scholar
  51. Niklison-Chirou MV, Dupuy F, Pena LB, Gallego SM, Barreiro-Arcos ML, Avila C, Torres-Bugeau C, Arcuri BE, Bellomio A, Minahk C, Morero RD (2010) Microcin J25 triggers cytochrome c release through irreversible damage of mitochondrial proteins and lipids. Int J Biochem Cell Biol 42:273–281CrossRefGoogle Scholar
  52. Nomura M (1963) Mode of action of colicins. Cold Spring Harbour Symp Quant Biol 28:315–324Google Scholar
  53. Oudega B, de Graaf FK (1976) Enzymatic properties of cloacin DF13 and kinetics of ribosome inactivation. Biochim Biophys Acta 425:296–304Google Scholar
  54. Pilsl H, Smajs D, Braun V (1999) Characterization of colicin S4 and its receptor OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol 181:3578–3581Google Scholar
  55. Poey ME, Azpiroz MF, Laviña M (2006) Comparative analysis of chromosome-encoded microcins. Antimicrob Agents Chemother 50:1411–1418CrossRefGoogle Scholar
  56. Pons A-M, Lanneluc G, Cottenceau G, Sablé S (2002a) New developments in non-post translationally modified microcins. Biochimie 84:531–537CrossRefGoogle Scholar
  57. Pons AM, Zorn N, Vignon D, Delalande F, Van Dorsselaer A, Cottenceau G (2002b) Microcin E492 is an unmodified peptide related in structure to colicin V. Antimicrob Agents Chemother 46:229–230CrossRefGoogle Scholar
  58. Rakin A, Boolgakowa E, Heesemann J (1996) Structural and functional organization of the Yersinia pestis bacteriocin pesticin gene cluster. Microbiology 142:3415–3424CrossRefGoogle Scholar
  59. Rebuffat S, Blond A, Destoumieux-Garzón D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives. Curr Protein Pept Sci 5:383–391, ReviewCrossRefGoogle Scholar
  60. Riley MA (1998) Molecular mechanisms of bacteriocins evolution. Annu Rev Genet 32:255–278CrossRefGoogle Scholar
  61. Rodríguez E, Laviña M (2003) The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action. Antimicrob Agents Chemother 47:181–187CrossRefGoogle Scholar
  62. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65:1380–1394, Review. Erratum in: Mol Microbiol 66:277CrossRefGoogle Scholar
  63. Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L, James R, French-Constant R (2002) The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the ­uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 214:241–249CrossRefGoogle Scholar
  64. Shehane SD, Sizemore RK (2002) Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol 92:322–328CrossRefGoogle Scholar
  65. Sugita H, Matsuo N, Hirose Y, Iwato M, Deguchi Y (1997) Vibrio sp. strain NM10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Appl Environ Microbiol 63:4986–4989Google Scholar
  66. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756Google Scholar
  67. Taylor R, Burgner JW, Clifton J, Cramer WA (1998) Purification and characterization of monomeric Escherichia coli vitamin B12 receptor with high affinity for colicin E3. J Biol Chem 273:31113–31118CrossRefGoogle Scholar
  68. Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279:28233–28242CrossRefGoogle Scholar
  69. Thomas JA, Valvano MA (1993) Role of tol genes in cloacin DF13 susceptibility of Escherichia coli K-12 strains expressing the cloacin DF13-aerobactin receptor IutA. J Bacteriol 175:548–552Google Scholar
  70. Van der Wal FJ, Luirink J, Oudega B (1995) Bacteriocin release proteins: mode of action, structure and biotechnological applications. FEMS Microbiol Rev 17:381–399CrossRefGoogle Scholar
  71. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J (2010) Siderophore microcins form the first family of structure-related antimicrobial peptides from Entero­bacteriaceae: isolation and characterization of microcins M and H47. Antimicrob Agents Chemother 54:288–297CrossRefGoogle Scholar
  72. Wahaba AH (1965) Vibriocin production in the cholera and El Tor vibrios. Bull World Health Organ 33:661–664Google Scholar
  73. Walker GC (1995) SOS-regulated proteins in translesion DNA synthesis and mutagenesis. Trends Biochem Sci 20:416–420, ReviewCrossRefGoogle Scholar
  74. Wertz JE, Riley MA (2004) Chimeric nature of two plasmids of Hafnia alvei encoding the bacteriocins alveicins A and B. J Bacteriol 186:1598–1605CrossRefGoogle Scholar
  75. Yang CC, Konisky J (1984) Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158:757–759Google Scholar
  76. Yorgey P, Lee J, Kordel J, Vivas E, Warner P, Jebaratnam D, Kolter R (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA 91:4519–4523CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Communication Molecules and Adaptation of MicroorganismsMuséum National d’Histoire Naturelle - CNRS, UMR 7245 CNRS-MNHNParisFrance

Personalised recommendations