Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

  • Sylvie RebuffatEmail author


Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.


Lactic Acid Bacterium Leader Peptide Precursor Peptide Immunity Protein Peptide Pheromone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229CrossRefGoogle Scholar
  2. Azpiroz MF, Laviña M (2007) Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother 51:2412–2419CrossRefGoogle Scholar
  3. Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061CrossRefGoogle Scholar
  4. Braun V, Patzer SI, Hantke K (2002) Ton-dependent colicins and microcins: modular design and evolution (review). Biochimie 84:365–380CrossRefGoogle Scholar
  5. Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJ, de Kruijff B (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278:19898–19903CrossRefGoogle Scholar
  6. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology (review). Microbiol Mol Biol Rev 71:158–229CrossRefGoogle Scholar
  7. Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics (review). Chem Rev 105:633–684CrossRefGoogle Scholar
  8. Chiuchiolo MJ, Delgado MA, Farías RN, Salomón RA (2001) Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 183:1755–1764CrossRefGoogle Scholar
  9. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food (review). Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  10. Cursino L, Smajs D, Smarda J, Nardi RM, Nicoli JR, Chartone-Souza E, Nascimento AM (2006) Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol 100:821–829CrossRefGoogle Scholar
  11. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384–2389CrossRefGoogle Scholar
  12. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins (review). Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  13. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007a) Microcins, gene-encoded antibacterial peptides from enterobacteria (review). Nat Prod Rep 24:708–734CrossRefGoogle Scholar
  14. Duquesne S, Petit V, Peduzzi J, Rebuffat S (2007b) Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria (review). J Mol Microbiol Biotechnol 13:200–209CrossRefGoogle Scholar
  15. Eijsink VG, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication (review). Antonie Leeuwenhoek 81:639–654CrossRefGoogle Scholar
  16. El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, Mengin-Lecreulx D (2006) Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem 281:22761–22772CrossRefGoogle Scholar
  17. Espesset D, Piet P, Lazdunski C, Géli V (1994) Immunity proteins to pore-forming colicins: structure-function relationships. Mol Microbiol 13:1111–1120CrossRefGoogle Scholar
  18. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318Google Scholar
  19. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action (review). J Pept Sci 11:688–696CrossRefGoogle Scholar
  20. García-Bustos JF, Pezzi N, Asensio C (1984) Microcin 7: purification and properties. Biochem Biophys Res Commun 119:779–785CrossRefGoogle Scholar
  21. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria (review). Biochimie 84:577–592CrossRefGoogle Scholar
  22. Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics (review). Appl Microbiol Biotechnol 81:591–606CrossRefGoogle Scholar
  23. Gordon DM (2009) The potential of bacteriocin-producing probiotics and associated caveats. Future Microbiol 4:941–943CrossRefGoogle Scholar
  24. Gross P, Braun V (1996) Colicin M is inactivated during import by its immunity protein. Mol Gen Genet 251:388–396CrossRefGoogle Scholar
  25. Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441CrossRefGoogle Scholar
  26. Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240CrossRefGoogle Scholar
  27. Héchard Y, Pelletier C, Cenatiempo Y, Frère J (2001) Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580Google Scholar
  28. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram positive bacteria (review). Microbiol Rev 59:171–200Google Scholar
  29. Jakes KS, Finkelstein A (2009) The colicin Ia receptor, Cir, is also the translocator for colicin Ia. Mol Microbiol 75:567–578CrossRefGoogle Scholar
  30. Johnsen L, Dalhus B, Leiros I, Nissen-Meyer J (2005a) 1.6-Angstroms crystal structure of EntA-im. A bacterial immunity protein conferring immunity to the antimicrobial activity of the pediocin-like bacteriocin enterocin A. J Biol Chem 280:19045–19050CrossRefGoogle Scholar
  31. Johnsen L, Fimland G, Nissen-Meyer J (2005b) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250CrossRefGoogle Scholar
  32. Keeble AH, Kleanthous C (2005) The kinetic basis for dual recognition in colicin endonuclease-immunity protein complexes. J Mol Biol 352:656–671CrossRefGoogle Scholar
  33. Kim IK, Kim MK, Kim JH, Yim HS, Cha SS, Kang SO (2007) High resolution crystal structure of PedB: a structural basis for the classification of pediocin-like immunity proteins. BMC Struct Biol 7:35CrossRefGoogle Scholar
  34. Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414CrossRefGoogle Scholar
  35. Kjos M, Nes IF, Diep DB (2009) Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology 155:2949–2961CrossRefGoogle Scholar
  36. Kjos M, Salehian Z, Nes IF, Diep DB (2010). An extracellular loop of the mannose phosphotransferase 1 system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913Google Scholar
  37. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior (review). Peptides 22:1579–1596CrossRefGoogle Scholar
  38. Kristiansen PE, Fimland G, Mantzilas D, Nissen-Meyer J (2005) Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950CrossRefGoogle Scholar
  39. Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M (1998) Sequence-specific 1H assignment and secondary structure of the bacteriocin AS-48 cyclic peptide. J Biomol NMR 12:173–175CrossRefGoogle Scholar
  40. Majeed H, Gillor O, Kerr B, Riley MA (2011) Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81Google Scholar
  41. Martínez-Bueno M, Valdivia E, Gálvez A, Coyette J, Maqueda M (1998) Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol 27:347–358CrossRefGoogle Scholar
  42. McCormick JK, Klaenhammer TR, Stiles ME (1999) Colicin V can be produced by lactic acid bacteria. Lett Appl Microbiol 29:37–41CrossRefGoogle Scholar
  43. Michiels J, Dirix G, Vanderleyden J, Xi C (2001) Processing and export of peptide pheromones and bacteriocins in gram-negative bacteria (review). Trends Microbiol 9:164–168CrossRefGoogle Scholar
  44. Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis (review). Nat Chem Biol 6:9–18CrossRefGoogle Scholar
  45. Oppegård C, Emanuelsen L, Thorbek L, Fimland G, Nissen-Meyer J (2010) The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Appl Environ Microbiol 76:1267–1273CrossRefGoogle Scholar
  46. Patton GC, van der Donk WA (2005) New developments in lantibiotic biosynthesis and mode of action (review). Curr Opin Microbiol 8:543–551CrossRefGoogle Scholar
  47. Qiu XQ, Wang H, Lu XF, Zhang J, Li SF, Cheng G, Wan L, Yang L, Zuo JY, Zhou YQ, Wang HY, Cheng X, Zhang SH, Ou ZR, Zhong ZC, Cheng JQ, Li YP, Wu GY (2003) An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nat Biotechnol 21:1480–1485, Erratum in: Nat Biotechnol (2004) 22:1590CrossRefGoogle Scholar
  48. Qiu XQ, Zhang J, Wang H, Wu GY (2005) A novel engineered peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 49:1184–1189CrossRefGoogle Scholar
  49. Rebuffat S, Blond A, Destoumieux-Garzón D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives (review). Curr Protein Pept Sci 5:383–391CrossRefGoogle Scholar
  50. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application (review). Annu Rev Microbiol 56:117–137CrossRefGoogle Scholar
  51. Sánchez-Barrena MJ, Martínez-Ripoll M, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334:541–549CrossRefGoogle Scholar
  52. Schauder S, Bassler BL (2001) The languages of bacteria (review). Genes Dev 15:1468–1480CrossRefGoogle Scholar
  53. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins (review). Mol Microbiol 65:1380–1394, Erratum in: Mol Microbiol (2007) 66:277CrossRefGoogle Scholar
  54. Sprules T, Kawulka KE, Vederas JC (2004) NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry 43:11740–11749CrossRefGoogle Scholar
  55. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria (review). Bacteriol Rev 40:722–756Google Scholar
  56. Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279:28233–28242CrossRefGoogle Scholar
  57. van der Wal FJ, Luirink J, Oudega B (1995) Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiol Rev 17:381–399CrossRefGoogle Scholar
  58. van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23:1293–1301CrossRefGoogle Scholar
  59. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J (2010) Siderophore microcins form the first family of structure-related antimicrobial peptides from Enterobacteriaceae: isolation and characterization of microcins M and H47. Antimicrob Agents Chemother 54:288–297CrossRefGoogle Scholar
  60. Walker GC (1995) SOS-regulated proteins in translesion DNA synthesis and mutagenesis (review). Trends Biochem Sci 20:416–420CrossRefGoogle Scholar
  61. Wooley RE, Gibbs PS, Shotts EB Jr (1999) Inhibition of Salmonella typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis 43:245–250CrossRefGoogle Scholar
  62. Zakharov SD, Cramer WA (2004) On the mechanism and pathway of colicin import across the E. coli outer membrane (review). Front Biosci 9:1311–1317CrossRefGoogle Scholar
  63. Zakharov SD, Zhalnina MV, Sharma O, Cramer WA (2006) The colicin E3 outer membrane translocon: immunity protein release allows interaction of the cytotoxic domain with OmpF porin. Biochemistry 45:10199–10207CrossRefGoogle Scholar
  64. Zakharov SD, Sharma O, Zhalnina MV, Cramer WA (2008) Primary events in the colicin translocon: FRET analysis of colicin unfolding initiated by binding to BtuB and OmpF. Biochemistry 47:12802–12809CrossRefGoogle Scholar
  65. Zeth K, Römer C, Patzer SI, Braun V (2008) Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J Biol Chem 283:25324–25331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Communication Molecules and Adaptation of Microorganisms, UMR 7245 CNRS-MNHNMuséum National d’Histoire Naturelle – Centre National de la Recherche ScientifiqueParisFrance

Personalised recommendations