Genomics of Bacillus Species

  • Ole Andreas Økstad
  • Anne-Brit Kolstø
Part of the Food Microbiology and Food Safety book series (FMFS)


Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).


Group Strain Anthrax Toxin Group Bacterium Food Poisoning Outbreak Emetic Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Dr. Nicolas Tourasse for performing the phylogenetic analyses for Figs. 2.1 and 2.3.


  1. Agaisse H, Gominet M, Økstad OA, Kolstø AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053Google Scholar
  2. Apetroaie-Constantin C, Mikkola R, Andersson MA, Teplova V, Suominen I, Johansson T, Salkinoja-Salonen M (2009) Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. J Appl Microbiol 106:1976–1985Google Scholar
  3. Aronson A (2002) Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci 59:417–425Google Scholar
  4. Asano SI, Nukumizu Y, Bando H, Iizuka T, Yamamoto T (1997) Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 63:1054–1057Google Scholar
  5. Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A (2008) The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol 74:1276–1280Google Scholar
  6. Baida G, Budarina ZI, Kuzmin NP, Solonin AS (1999) Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol Lett 180:7–14Google Scholar
  7. Baida GE, Kuzmin NP (1995) Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta 1264:151–154Google Scholar
  8. Barker M, Thakker B, Priest FG (2005) Multilocus sequence typing reveals that Bacillus cereus strains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Lett 245:179–184Google Scholar
  9. Baron F, Cochet MF, Grosset N, Madec MN, Briandet R, Dessaigne S et al (2007) Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J Food Prot 70:2782–2791Google Scholar
  10. Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J (2003) Gastrointestinal anthrax: review of the literature. Arch Intern Med 163:2527–2531Google Scholar
  11. Beecher DJ, Macmillan JD (1991) Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59:1778–1784Google Scholar
  12. Beecher DJ, Wong AC (1997) Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 272:233–239Google Scholar
  13. Beecher DJ, Wong AC (2000) Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146(Pt 6):1371–1380Google Scholar
  14. Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398Google Scholar
  15. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C et al (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801Google Scholar
  16. Brillard J, Lereclus D (2004) Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology 150:2699–2705Google Scholar
  17. Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098Google Scholar
  18. Carlson CR, Caugant DA, Kolstø AB (1994a) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725Google Scholar
  19. Carlson CR, Caugant DA, Kolstø AB (1994b) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725Google Scholar
  20. Carlson CR, Gronstad A, Kolstø AB (1992) Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol 174:3750–3756Google Scholar
  21. Carlson CR, Johansen T, Kolstø AB (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167Google Scholar
  22. Carlson CR, Kolstø AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060Google Scholar
  23. Chitlaru T, Gat O, Gozlan Y, Ariel N, Shafferman A (2006) Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 188:3551–3571Google Scholar
  24. Cohn F (1872) Untersuchungen über Bacterien. Beitrage zur Biologie der Pflanzen 1:127–244Google Scholar
  25. Dai Z, Sirard JC, Mock M, Koehler TM (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181Google Scholar
  26. Delihas N (2008) Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol 67:475–481Google Scholar
  27. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A et al (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43:4277–4279Google Scholar
  28. Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338Google Scholar
  29. Drysdale M, Heninger S, Hutt J, Chen Y, Lyons CR, Koehler TM (2005) Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24:221–227Google Scholar
  30. Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20Google Scholar
  31. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, Martlbauer E, Scherer S (2005a) Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71:105–113Google Scholar
  32. Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindback T, Andersson M, Schulz A et al (2005b) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183–197Google Scholar
  33. Fagerlund A, Brillard J, Furst R, Guinebretiere MH, Granum PE (2007) Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol 7:43Google Scholar
  34. Fagerlund A, Lindback T, Storset AK, Granum PE, Hardy SP (2008) Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154:693–704Google Scholar
  35. Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355Google Scholar
  36. Fedhila S, Gohar M, Slamti L, Nel P, Lereclus D (2003) The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol 185:2820–2825Google Scholar
  37. Fedhila S, Guillemet E, Nel P, Lereclus D (2004) Characterization of two Bacillus thuringiensis genes identified by in vivo screening of virulence factors. Appl Environ Microbiol 70:4784–4791Google Scholar
  38. Fedhila S, Nel P, Lereclus D (2002) The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J Bacteriol 184:3296–3304Google Scholar
  39. Fouet A, Mock M (2006) Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9:160–166Google Scholar
  40. Ghelardi E, Celandroni F, Salvetti S, Fiscarelli E, Senesi S (2007) Bacillus thuringiensis pulmonary infection: critical role for bacterial membrane-damaging toxins and host neutrophils. Microbes Infect 9:591–598Google Scholar
  41. Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M et al (2008) The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793Google Scholar
  42. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711Google Scholar
  43. Granum PE, O’Sullivan K, Lund T (1999) The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177:225–229Google Scholar
  44. Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N et al (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390Google Scholar
  45. Helgason E, Caugant DA, Lecadet MM, Chen Y, Mahillon J, Lovgren A et al (1998) Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87Google Scholar
  46. Helgason E, Caugant DA, Olsen I, Kolstø AB (2000a) Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622Google Scholar
  47. Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201Google Scholar
  48. Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000b) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630Google Scholar
  49. Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000c) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630Google Scholar
  50. Hendriksen NB, Hansen BM, Johansen JE (2006) Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89:239–249Google Scholar
  51. Hernandez E, Ramisse F, Cruel T, le Vagueresse R, Cavallo JD (1999) Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol Med Microbiol 24:43–47Google Scholar
  52. Herron WM (1930) Rancidity in cheddar cheese. Queen’s University, Kingston, ON, CanadaGoogle Scholar
  53. Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H, Bliss KA et al (2004) Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol 70:1068–1080Google Scholar
  54. Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK et al (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454Google Scholar
  55. Hoton FM, Andrup L, Swiecicka I, Mahillon J (2005) The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151:2121–2124Google Scholar
  56. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91Google Scholar
  57. Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P (1999) Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J Appl Microbiol 87:263–269Google Scholar
  58. Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640Google Scholar
  59. Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M et al (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7:933–944Google Scholar
  60. Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K et al (1997a) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824Google Scholar
  61. Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K et al (1997b) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824Google Scholar
  62. Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H (2010) The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 5(7):e10986.Google Scholar
  63. Klee SR, Ozel M, Appel B, Boesch C, Ellerbrok H, Jacob D et al (2006) Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J Bacteriol 188:5333–5344Google Scholar
  64. Klevan A, Tourasse NJ, Stabell FB, Kolstø AB, Økstad OA (2007) Exploring the evolution of the Bacillus cereus group repeat element bcr1 by comparative genome analysis of closely related strains. Microbiology 153:3894–3908Google Scholar
  65. Kolstø AB, Tourasse NJ, Økstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63:451–476Google Scholar
  66. Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198Google Scholar
  67. Kreft J, Berger H, Hartlein M, Muller B, Weidinger G, Goebel W (1983) Cloning and expression in Escherichia coli and Bacillus subtilis of the hemolysin (cereolysin) determinant from Bacillus cereus. J Bacteriol 155:681–689Google Scholar
  68. Kuppe A, Evans LM, McMillen DA, Griffith OH (1989) Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171:6077–6083Google Scholar
  69. Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C et al (2008) Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 171:236–249Google Scholar
  70. Leendertz FH, Ellerbrok H, Boesch C, Couacy-Hymann E, Matz-Rensing K, Hakenbeck R et al (2004) Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430:451–452Google Scholar
  71. Leendertz FH, Lankester F, Guislain P, Neel C, Drori O, Dupain J et al (2006) Anthrax in Western and Central African great apes. Am J Primatol 68:928–933Google Scholar
  72. Lindback T, Fagerlund A, Rodland MS, Granum PE (2004) Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:3959–3967Google Scholar
  73. Lindbäck T, Hardy SP, Dietrich R, Sødring M, Didier A, Moravek M, Fagerlund A, Bock S, Nielsen C, Casteel M, Granum PE, Märtlbauer E (2010) Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun. 78(9):3813–3821Google Scholar
  74. Lindback T, Økstad OA, Rishovd AL, Kolstø AB (1999) Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145(Pt 11):3139–3146Google Scholar
  75. Lovgren A, Carlson CR, Kang D, Eskils K, Kolstø AB (2002) Physical mapping of the Bacillus thuringiensis subsp. kurstaki and alesti chromosomes. Curr Microbiol 44:81–87Google Scholar
  76. Lucking G, Dommel MK, Scherer S, Fouet A, Ehling-Schulz M (2009) Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155:922–931Google Scholar
  77. Lund T, De Buyser ML, Granum PE (2000) A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38:254–261Google Scholar
  78. Lund T, Granum PE (1996) Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141:151–156Google Scholar
  79. Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336:1142–1148Google Scholar
  80. Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo SC (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241Google Scholar
  81. McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC (2008) Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl Environ Microbiol 74:7451–7453Google Scholar
  82. Mignot T, Couture-Tosi E, Mesnage S, Mock M, Fouet A (2004) In vivo Bacillus anthracis gene expression requires PagR as an intermediate effector of the AtxA signalling cascade. Int J Med Microbiol 293:619–624Google Scholar
  83. Mignot T, Mock M, Fouet A (2003) A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47:917–927Google Scholar
  84. Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671Google Scholar
  85. Mock M, Mignot T (2003) Anthrax toxins and the host: a story of intimacy. Cell Microbiol 5:15–23Google Scholar
  86. Nieminen T, Rintaluoma N, Andersson M, Taimisto AM, Ali-Vehmas T, Seppala A et al (2007) Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet Microbiol 124:329–339Google Scholar
  87. Okinaka R, Cloud K, Hampton O, Hoffmaster A, Hill K, Keim P et al (1999a) Sequence, assembly and analysis of pX01 and pX02. J Appl Microbiol 87:261–262Google Scholar
  88. Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P et al (1999b) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515Google Scholar
  89. Økstad OA, Hegna I, Lindback T, Rishovd AL, Kolstø AB (1999a) Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology 145(Pt 3):621–631Google Scholar
  90. Økstad OA, Gominet M, Purnelle B, Rose M, Lereclus D, Kolstø AB (1999b) Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145(Pt 11):3129–3138Google Scholar
  91. Økstad OA, Tourasse NJ, Stabell FB, Sundfaer CK, Egge-Jacobsen W, Risoen PA et al (2004) The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol 186:7714–7725Google Scholar
  92. Oscarsson J, Mizunoe Y, Uhlin BE, Haydon DJ (1996) Induction of haemolytic activity in Escherichia coli by the slyA gene product. Mol Microbiol 20:191–199Google Scholar
  93. Oscarsson J, Westermark M, Lofdahl S, Olsen B, Palmgren H, Mizunoe Y et al (2002) Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars typhi and paratyphi A. Infect Immun 70:5759–5769Google Scholar
  94. Pannucci J, Okinaka RT, Sabin R, Kuske CR (2002a) Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol 184:134–141Google Scholar
  95. Pannucci J, Okinaka RT, Williams E, Sabin R, Ticknor LO, Kuske CR (2002b) DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34Google Scholar
  96. Passalacqua KD, Bergman NH (2006) Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 1:397–415Google Scholar
  97. Perego M, Hoch JA (2008) Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 16:215–221Google Scholar
  98. Preisz H (1909) Experimentelle studien über virulenz, empfänglichkeit und immunität beim milzbrand. Zeitschr Immunität-Forsch 5:341–452Google Scholar
  99. Priest FG (1993) Systematics and ecology of Bacillus. In: Bacillus subtilis and other Gram-positive bacteria - Biochemistry, physiology, and molecular genetics. In: Sonenshein AL, Hoch JA, Losick R (eds.) ASM press, American Society for Microbiology, Washington, D.C. ISBN 1-55581-053-5.Google Scholar
  100. Pruss BM, Dietrich R, Nibler B, Martlbauer E, Scherer S (1999) The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Microbiol 65:5436–5442Google Scholar
  101. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329Google Scholar
  102. Rasko DA, Ravel J, Økstad OA, Helgason E, Cer RZ, Jiang L et al (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988Google Scholar
  103. Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ et al (2007) Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 189:52–64Google Scholar
  104. Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE et al (2003a) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86Google Scholar
  105. Read TD, Peterson SN, Tourasse NJ, Baillie LW, Paulsen IT, Nelson KE et al (2003b) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86Google Scholar
  106. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L et al (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033Google Scholar
  107. Reddy A, Battisti L, Thorne CB (1987) Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169:5263–5270Google Scholar
  108. Richter S, Anderson VJ, Garufi G, Lu L, Budzik JM, Joachimiak A et al (2009) Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol Microbiol 71:404–420Google Scholar
  109. Saile E, Koehler TM (2006) Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 72:3168–3174Google Scholar
  110. Salkinoja-Salonen MS, Vuorio R, Andersson MA, Kampfer P, Andersson MC, Honkanen-Buzalski T, Scoging AC (1999) Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl Environ Microbiol 65:4637–4645Google Scholar
  111. Scarano C, Virdis S, Cossu F, Frongia R, De Santis EP, Cosseddu AM (2009) The pattern of toxin genes and expression of diarrheal enterotoxins in Bacillus thuringiensis strains isolated from commercial bioinsecticides. Vet Res Commun 33(Suppl 1):257–260Google Scholar
  112. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806Google Scholar
  113. Shinagawa K, Sugiyama J, Terada T, Matsusaka N, Sugii S (1991) Improved methods for purification of an enterotoxin produced by Bacillus cereus. FEMS Microbiol Lett 64:1–5Google Scholar
  114. Slamti L, Lereclus D (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559Google Scholar
  115. Slamti L, Lereclus D (2005) Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187:1182–1187Google Scholar
  116. Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642Google Scholar
  117. Soule M (1932) Identity of Bacillus subtilis, Cohn 1872. J Infect Dis 51:191–215Google Scholar
  118. Sozhamannan S, Chute MD, McAfee FD, Fouts DE, Akmal A, Galloway DR et al (2006) The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages. BMC Microbiol 6:34Google Scholar
  119. Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606Google Scholar
  120. Stenfors LP, Granum PE (2001) Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol Lett 197:223–228Google Scholar
  121. Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13Google Scholar
  122. Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB (2006) Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72:5118–5121Google Scholar
  123. Ticknor LO, Kolstø AB, Hill KK, Keim P, Laker MT, Tonks M, Jackson PJ (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67:4863–4873Google Scholar
  124. Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, Økstad OA, Fouet A, Mock M, Kolstø AB. Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiology. In Press.Google Scholar
  125. Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB (2006) The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101:579–593Google Scholar
  126. Tourasse NJ, Kolstø AB (2008) SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res 36:D461–D468Google Scholar
  127. Tran SL, Guillemet E, Gohar M, Lereclus D, Ramarao N (2010) CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol 192:2638–2642Google Scholar
  128. Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338Google Scholar
  129. Uchida I, Makino S, Sekizaki T, Terakado N (1997) Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol Microbiol 23:1229–1240Google Scholar
  130. Van der Auwera GA, Andrup L, Mahillon J (2005) Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6:103Google Scholar
  131. Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J et al (2007) Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461Google Scholar
  132. Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K et al (2007) A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J Clin Microbiol 45:1274–1277Google Scholar
  133. Verheust C, Fornelos N, Mahillon J (2005) GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J Bacteriol 187:1966–1973Google Scholar
  134. Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ (2000) E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100:265–276Google Scholar
  135. Whiteley HR, Schnepf HE (1986) The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol 40:549–576Google Scholar
  136. Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Department of Pharmaceutical BiosciencesUniversity of OsloOsloNorway

Personalised recommendations