Skip to main content

Mechanical Characterization of Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Aerogels are multifunctional porous nanostructured materials (e.g., thermally/acoustically insulating) derived from their vast internal empty space and their high specific surface area. Under certain conditions, aerogels may also have exceptional specific mechanical properties as well. The mechanical characteristics of aerogels are discussed in this chapter. First, we summarize work conducted on the mechanical characterization of traditional aerogels, and second, we describe the mechanical behavior of polymer crosslinked aerogels. In polymer crosslinked aerogels, a few nanometer thick conformal polymer coating is applied on secondary particles without clogging the pores, thus preserving the multifunctionality of the native framework while improving mechanical strength. The mechanical properties were characterized under both quasi-static loading conditions (dynamic mechanical analysis, compression, and flexural bending testing) as well as under high strain rate loading conditions using a split Hopkinson pressure bar. The effects of strain rate, mass density, loading–unloading, moisture concentration, and low temperature on the mechanical properties were evaluated. Digital image correlation was used to measure the surface strains through analysis of images acquired by ultrahigh-speed photography for calculation of properties including dynamic Poisson’s ratio. Among remarkable results described herewith, crosslinked vanadia aerogels remain ductile even at −180°C, a property derived from interlocking and sintering-like fusion of skeletal nanoworms during compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127: 741–741

    Article  CAS  Google Scholar 

  2. Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36: 52–64

    Article  CAS  Google Scholar 

  3. Kistler SS (1935) The relationship between heat conductivity and structure in silica aerogel. J Phys Chem 39: 79–86

    Article  CAS  Google Scholar 

  4. Kearby K, Kistler SS, Swann S Jr. (1938) Aerogel catalyst: conversion of alcohols to amines. Ind Eng Chem 30: 1082–1086

    Article  CAS  Google Scholar 

  5. Kistler SS, Fisher EA, Freeman IR (1943) Sorption and surface area in silica aerogel. J Am Chem Soc 65: 1909–1919

    Article  CAS  Google Scholar 

  6. Gesser HD, Goswami PC (1989) Aerogels and related porous materials. Chem Rev 89: 765–788

    Article  CAS  Google Scholar 

  7. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90: 33–72

    Article  CAS  Google Scholar 

  8. Pierre AC, Pajong GM (2002) Chemistry of aerogels and their applications. Chem Rev 102: 4243–4265

    Article  CAS  Google Scholar 

  9. Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188: 46–53

    Article  CAS  Google Scholar 

  10. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non-Cryst Solids 225: 364–368

    Article  CAS  Google Scholar 

  11. Fricke J, Emmerling A (1998) Aerogels-recent progress in production techniques and novel applications. J Sol-Gel Sci Tech 13: 299–303

    Article  CAS  Google Scholar 

  12. Akimov YK (2002) Fields of application of aerogels (review). Instrum Exp Tech 46: 287–299

    Article  Google Scholar 

  13. Pajonk GM (2003) Some applications of silica aerogels. Colloid Polym Sci 281: 637–651

    Article  CAS  Google Scholar 

  14. Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350: 54–60

    Article  CAS  Google Scholar 

  15. Jones SM (2006) Aerogel: space exploration applications. J Sol-Gel Sci Techn 40: 351–357

    Article  CAS  Google Scholar 

  16. Jones SM (2007) A method for producing gradient density aerogel. J Sol-Gel Sci Techn 44: 255–258

    Article  CAS  Google Scholar 

  17. Fricke J (1988) Aerogels-highly tenuous solids with fascinating properties. J Non-Cryst Solids 100: 169–173

    Article  CAS  Google Scholar 

  18. Woignier T, Reynes J, Alaoui AH, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non-Cryst Solids 241: 45–52

    Article  CAS  Google Scholar 

  19. Miner MR, Hosticka B, Norris PM (2004) The effects of ambient humidity on the mechanical properties and surface chemistry of hygroscopic silica aerogel. J Non-Cryst Solids 350: 285–289

    Article  CAS  Google Scholar 

  20. Wingfield C, Baski A, Bertino1 MF, Leventis N, Mohite DP, and Lu H (2009) Fabrication of sol-gel materials with anisotropic physical properties by photo-cross-linking. Chem Mater 21: 2108–2114

    Google Scholar 

  21. Scherer GW, Smith DM, Qiu X, Anderson LM (1995) Compression of aerogel. J Non-Cryst Solids 186: 316–320

    Article  CAS  Google Scholar 

  22. Scherer GW (1998) Characterization of aerogels. Adv Colloid Interface Sci 76: 321–339

    Article  Google Scholar 

  23. Knauss WG, Emri I, and Lu H (2008) Mechanics of Polymers: Viscoelasticity, in Handbook of Experimental Solid Mechanics, pp 49–95, ed. by Sharpe Jr and William N, Springer, USA

    Google Scholar 

  24. Struik LCE (1978) Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam, North-Holland

    Google Scholar 

  25. Lu H, Tan G, Chen W (2001) Modeling of constitutive behavior for Epon 828/T-403 at high strain rates. Mech Time-Depend Mater 5: 119–130

    Article  CAS  Google Scholar 

  26. Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: A critical review. Appl Mech Rev 57: 223–250

    Article  Google Scholar 

  27. Krautkramer K (1969) Ultrasonic Testing of Materials, Springer-Verlag, New York

    Book  Google Scholar 

  28. Ensminger D (1988) Ultrasonics: Fundamentals, Technology, Applications, M. Dekker, New York

    Google Scholar 

  29. Woignier T, Phalippou J (1988) Mechanical strength of silica aerogels. J Non-Cryst Solids 100: 404–408

    Article  CAS  Google Scholar 

  30. Woignier T, Phalippou J, Hdach H, Larnac G, Pernot F, Scherer GW (1992) Evolution of mechanical properties during the alcogel-aerogel-glass process. J Non-Cryst Solids 147: 672–680

    Article  Google Scholar 

  31. Calas S, Despetis F, Woignier T, Phalippou J (1997) Mechanical Strength Evolution from Aerogels to Silica Glass. J Porous Mater 4: 211–217

    Article  CAS  Google Scholar 

  32. Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer 47: 5754–5761

    Article  CAS  Google Scholar 

  33. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19: 1589–1593

    Article  CAS  Google Scholar 

  34. Rosa-Fox NDL, Morales-Florez V, Toledo-Fernandez JA, Pinero M, Esquivias L, Keiderling U (2008) SANS study of hybrid silica aerogels under “in-situ” uniaxial compression. J Sol-Gel Sci Techn 45: 245–250

    Article  Google Scholar 

  35. Grob J, Schlief T, Fricke J (1993) Ultrasonic evaluation of elastic properties of silica aerogels. Mater Sci Eng A168: 235–238

    Google Scholar 

  36. Fricke J (1990) SiO2-aerogels: Modification and applications. J Non-Cryst Solids 121: 188–192

    Article  CAS  Google Scholar 

  37. Grob J, Fricke J (1995) Scaling of elastic properties in highly porous nanostructured aerogels. NanoStruct Mater 6: 905–908

    Article  Google Scholar 

  38. Forest L, Gibiat V, Woignier T (1998) Biot's theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225: 287–292

    Article  CAS  Google Scholar 

  39. Abramoff B, Klein LC (2005) Elastic Properties of Silica Xerogels. J Am Ceram Soc 73: 3466–3469

    Article  Google Scholar 

  40. Moner-Girona M, Roig A, Molins E, Martinez E, Esteve J (1999) Micromechanical properties of silica aerogel. Appl Phys Lett 75:653–655

    Article  CAS  Google Scholar 

  41. Moner-Girona M, Martinez E, Roig A, Esteve J, Molins (2001) Mechanical properties of silica aerogels measured by microindentation: influence of sol-gel processing parameters and carbon addition. J Non-Cryst Solids 285: 244–250

    Google Scholar 

  42. Kucheyev SO, Hamza AV, Satcher Jr JH, Worsley MA (2009) Depth-sensing indentation of low-density brittle nanoporous solid. Acta Mater 57: 3472–3480

    Article  CAS  Google Scholar 

  43. Rosa-Fox NDL, Morales-Florez V, Toledo-Fernandez JA, Pinero M, Mendoza-Serna R, Esquivias L (2007) Nanoindentation on hybrid organic/inorganic silica aerogel. J Eur Ceram Soc 27: 3311–3316

    Article  Google Scholar 

  44. Kucheyev SO, Baumann TF, Cox CA, Wang YM, Bradby JE (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89: 041911–3

    Article  Google Scholar 

  45. Oliver WC and Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7: 1564–1583

    Article  CAS  Google Scholar 

  46. Stark RW, Drobek T, Weth M, Fricke J, Heckl WM (1998) Determination of elastic properties of single aerogel powder particles with the AFM. Ultramicroscopy 75: 161–169

    Article  CAS  Google Scholar 

  47. Vincent A, Babu S, Seal S (2007) Surface elastic properties of porous nanosilica coating by scanning force microscopy. Appl Phys Lett 91: 161901–3

    Article  Google Scholar 

  48. Tan C, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13: 644–646

    Article  CAS  Google Scholar 

  49. Ma HS, Prevost JH, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure–property relationship of aerogels. J Non-Cryst Solids 285: 216–221

    Article  CAS  Google Scholar 

  50. Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW (2000) Mechanical structure-property relationship of aerogels. J Non-Cryst Solids 277: 127–141

    Article  CAS  Google Scholar 

  51. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-M M, (2002) Nanoengineering strong silica aerogels. Nano Lett 2: 957–960

    Article  CAS  Google Scholar 

  52. Zhang G, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids 350:152–164

    Article  CAS  Google Scholar 

  53. Leventis, N (2007) Three dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884

    Article  CAS  Google Scholar 

  54. Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) Room temperature synthesis of noble metal clusters in the mesopores of mechanically strong silica-polymer aerogel composites. J Sol-Gel Sci Techn 30: 43–48

    Article  CAS  Google Scholar 

  55. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Crosslinking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17: 1085–1098

    Article  CAS  Google Scholar 

  56. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical and mechanical characterization of isocyanate-crosslinked amine-modified silica aerogels. Chem Mater 18: 285–296

    Article  CAS  Google Scholar 

  57. Meador MAB, Capadona LA, MacCorkle L, Papadopoulos DS, Leventis N (2007) Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels. Chem Mater 19: 2247–2260

    Article  CAS  Google Scholar 

  58. Ilhan UF, Fabrizio EF, McCorkle L, Scheiman D, Dass A, Palzer A, Meador MAB, Leventis N (2006) Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J Mater Chem 16: 3046–3054

    Article  CAS  Google Scholar 

  59. Meador MAB, Vivod SL, McCorkle L, Quade D, Sullivan RM, Ghosn LJ, Clark N, Capadona LA (2008) Reinforcing polymer cross-linked aerogels with carbon nanofibers. J Mater Chem 18: 1843–1852

    Article  CAS  Google Scholar 

  60. Leventis N, Mulik S, Wang X, Dass A, Sotiriou-Leventis C, Lu H (2007) Stresses at the interface of micro with nano. J Am Chem Soc 129: 10660–10661

    Article  CAS  Google Scholar 

  61. Leventis N, Mulik, S, Wang X, Dass A, Patil VU, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non-Cryst Solids 354; 632–644

    Article  CAS  Google Scholar 

  62. Leventis N, Sotiriou-Leventis C, Mulik S, Dass A, Schnobrich J, Hobbs A, Fabrizio EF, Luo H, Churu G, Zhang Y, Lu H (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at Cryogenic temperatures. J Mater Chem 18: 2475–2482

    Article  CAS  Google Scholar 

  63. Luo H, Churu G, Fabrizio EF, Schnobrich J, Hobbs A, Dass A, Mulik S, Zhang Y, Grady BP, Capecelatro A, Sotiriou-Leventis C, Lu H, Leventis N (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol-Gel Sci Techn 48: 113–134

    Article  CAS  Google Scholar 

  64. Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223: 179–189

    Article  CAS  Google Scholar 

  65. Luo H, Lu H, Leventis N (2006) The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates. Mech Time-Depend Mater 10: 83–111

    Article  CAS  Google Scholar 

  66. She JH, Ohji T (2002) Porous mullite ceramics with high strength. J Mater Sci Lett 21: 1833–1834

    Article  CAS  Google Scholar 

  67. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284: 622–624

    Article  CAS  Google Scholar 

  68. Amatani T, Nakanishi K, Hirao K, Kodaira T (2005) Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater 17:2114–2119

    Article  CAS  Google Scholar 

  69. Livage J (1991) Vanadium pentoxide gels. Chem Mater 3: 578–593

    Article  CAS  Google Scholar 

  70. Sudoh K, Hirashima H (1992) Preparation and physical properties of V2O5 aerogel. J Non-Cryst Solids 147: 386–388

    Article  Google Scholar 

  71. Sudant G, Baudrin E, Dunn B, Tarascon JM (2004) Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. J Electrochem Soc 151: A666–A671

    Article  CAS  Google Scholar 

  72. Frew DJ, Forrestal MJ, Chen W (2002) Pulse-shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42: 93–106

    Article  CAS  Google Scholar 

  73. Gray GT (2000) Classic split-Hopkinson pressure bar technique. Mech Test Eval, ASM Handbook 8: 462–476

    Google Scholar 

  74. Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance material. Exp Mech 39: 81–85

    Article  CAS  Google Scholar 

  75. Chen W, Lu F, Cheng M (2002) Tension and compression testing of two polymers under quasi-static and dynamic loading. Polym Test 21: 113–121

    Article  CAS  Google Scholar 

  76. Chen W, Zhou B (1998) Constitutive behavior of Epon 828/T-403 at various strain rates. Mech Time-Depend Mater 2: 103–111

    Article  CAS  Google Scholar 

  77. Gibson LJ (2000) Mechanical behavior of metallic foams. Ann Rev Mater Sci 30: 181–227

    Google Scholar 

  78. Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties-2nd ed, Cambridge University Press

    Google Scholar 

  79. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21: 427–432

    Google Scholar 

  80. Sutton MA, Wolters WJ, Ranson WF, McNeil SR (1983) Determination of displacements using an improved digital image correlation method. Image Vis Comput 1: 133–139

    Article  Google Scholar 

  81. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25: 232–244

    Article  Google Scholar 

  82. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29: 261–267

    Article  Google Scholar 

  83. Lu H, Cary PD (2000) Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp Mech 40: 393–400

    Article  Google Scholar 

  84. Wigley DA (1971) Mechanical Properties of Materials at Low Temperatures, Plenum Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, H., Luo, H., Leventis, N. (2011). Mechanical Characterization of Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics