Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices

  • Anna CorriasEmail author
  • Maria Francesca Casula
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


Aerogels are regarded as ideal candidates for the design of functional nanocomposites based on supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading and to provide nanoparticle accessibility as required to supply their specific functionalities. The incorporation of nanoparticles as a way to increase the possibility of the use of aerogels as innovative functional materials and the challenges in the controlled preparation of nanocomposite aerogels is reviewed in this chapter.


Silica Aerogel Metal Oxide Nanoparticles Composite Aerogel CoFe2O4 Nanoparticles Maghemite Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to D. Loche, A. Falqui, D. Carta, G. Navarra, and G. Mountjoy for discussion and proof reading.


  1. 1.
    Ko I (1998) Aerogels, Kirk-Othmer Encyclopedia of Chemical Technology John Wiley & Sons, 1–3Google Scholar
  2. 2.
    Husing N, Schubert U (1998) Aerogels-Airy Materials: Chemistry, Structure, and Properties. Angew Chem Int Ed 37:22–45CrossRefGoogle Scholar
  3. 3.
    Piccaluga G, Corrias A, Ennas G, Musinu A (2000) Sol-Gel Preparation and Characterization of Metal-Silica and Metal Oxide-Silica Nanocomposites. Mater Res Found 13:1–56Google Scholar
  4. 4.
    Baumann TF, Satcher JH Jr, (2003) Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons. Chem Mater 15:3745–3747CrossRefGoogle Scholar
  5. 5.
    Baumann TF, Fox GA, Satcher JH Jr Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and Characterization of Copper-Doped Carbon Aerogels. Langmuir 18:7073–7076CrossRefGoogle Scholar
  6. 6.
    Casas LI, Roig A, Rodriguez E, Molins E, Tejada J, Sort J (2001) Silica aerogel-iron oxide nanocomposites: structural and magnetic properties. J Non-Cryst Solids 285:37–43CrossRefGoogle Scholar
  7. 7.
    Casula MF, Corrias A, Paschina G (2001) Iron oxide-silica aerogel and aerogel nanocomposite materials. J Non-Cryst Solids 293–295:25–31CrossRefGoogle Scholar
  8. 8.
    Cannas C, Casula MF, Concas G, Corrias A, Gatteschi D, Falqui A, Musinu A, Sangregorio C, Spano G (2001) Magnetic Properties of γ-Fe2O3-SiO2 Aerogel and Xerogel Nanocomposite Materials. J Mater Chem 11:3180–3187CrossRefGoogle Scholar
  9. 9.
    Del Monte F, Morales MP Levy D, Fernandez A, Ocana M, Roig A, Molins E, O’Grady K, Serna CJ (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3634CrossRefGoogle Scholar
  10. 10.
    Casas LI, Roig A, Molins E, Greneche JM, Asenjo J, Tejada J (2002) Iron oxide nanoparticles hosted in silica aerogels. Appl Phys A 74:591–597CrossRefGoogle Scholar
  11. 11.
    van Raap MBF, Sanchez FH, Torres CER, Casas L, Roig A, Molins E, (2005) Detailed magnetic dynamic behaviour of nanocomposite iron oxide aerogels. J Phys Condens Matter 17:6519–6531CrossRefGoogle Scholar
  12. 12.
    Popovici M, Gich M, Roig A, Casas L, Molins E, Savii C, Becherescu D, Sort J, Surinach S, Munoz JS, Baro MD, Nogues J (2004) Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors. Langmuir 20:1425–1429CrossRefGoogle Scholar
  13. 13.
    Lancok A, Zaveta K, Popovici M, Savii C, Gich M, Roig A, Molins E, Barcova K (2005) Mössbauer studies on ultraporous Fe-Oxide/SiO2 aerogel. Hyperfine Interact 165:203–208CrossRefGoogle Scholar
  14. 14.
    van Raap MBF, Sanchez FH, Leyva AG, Japas ML, Cabanillas E, Troiani H (2007) Synthesis and magnetic properties of iron oxide-silica aerogel nanocomposites. Physica B 398:229–234CrossRefGoogle Scholar
  15. 15.
    Fabrizioli P, Burgi T, Burgener M, van Doorslaer S, Baiker A (2002) Synthesis, structural and chemical properties of iron oxide-silica aerogels. J Mater Chem 12:619–630CrossRefGoogle Scholar
  16. 16.
    Clapsaddle BJ, Gash AE, Satcher JH, Simpson RL (2003) Silicon oxide in an iron(III) oxide matrix: the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331:190–201CrossRefGoogle Scholar
  17. 17.
    Gash AE, Tillotson T.M., Satcher J.H. Jr., Poco J.F., Hrubesh L.W., Simpson R.L. (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007CrossRefGoogle Scholar
  18. 18.
    Casula MF, Corrias A, Paschina G (2000) Nickel oxide-silica and nickel-silica aerogel and aerogel nanocomposite materials. J Mater Res 15:2187–2194CrossRefGoogle Scholar
  19. 19.
    Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD (1998) Enhancement effect of photoluminescence in assembles of nano-ZnO particles/silica aerogels. J Appl Phys 83:4389–4391CrossRefGoogle Scholar
  20. 20.
    Amlouk A, El Mir L, Kraiem S, Alaya S (2006) Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix. J Phys Chem Solids 67:1464–1468CrossRefGoogle Scholar
  21. 21.
    El Mir L, Amlouk A, Barthou C (2006) Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix. J Phys Chem Solids 67:2395–2399CrossRefGoogle Scholar
  22. 22.
    El Mir L, Amlouk A, Barthou C, Alaya S (2008) Luminescence of composites based on oxide aerogels incorporated in silica glass host matrix. Mater Sci Eng C 28:771–776CrossRefGoogle Scholar
  23. 23.
    Wei TY, Kuo CY, Hsu YJ, Lu SY, Chang, YC (2008) Tin oxide nanocrystals embedded in silica aerogel: Photoluminescence and photocatalysis. Microporous Mesoporous Mater 112:580–588CrossRefGoogle Scholar
  24. 24.
    Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, van Buuren T, Hamza AV, Satcher JH, Elam JW, Pellin MJ (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett 86:083108CrossRefGoogle Scholar
  25. 25.
    Yao N, Cao SL, Yeung KL (2009) Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures. Microporous Mesoporous Mater 117:570–579CrossRefGoogle Scholar
  26. 26.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  27. 27.
    Casula MF, Loche D, Marras S, Paschina G, Corrias A (2007) Role of urea in the preparation of highly porous nanocomposite aerogels. Langmuir 23:3509–3512CrossRefGoogle Scholar
  28. 28.
    Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S (2007) Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J Phys Chem C 111:916–922CrossRefGoogle Scholar
  29. 29.
    Carta D, Corrias A, Mountjoy G, Navarra G (2007) Structural study of highly porous nanocomposite aerogels. J Non-Cryst Solids 353:1785–1788CrossRefGoogle Scholar
  30. 30.
    Carta D, Mountjoy G, Navarra G, Casula MF, Loche D, Marras S, Corrias A (2007) X-ray absorption investigation of the formation of cobalt ferrite nanoparticles in an aerogel silica matrix. J Phys Chem C 111:6308–6317CrossRefGoogle Scholar
  31. 31.
    Carta D, Casula MF, Corrias A, Falqui A, Loche D, Mountjoy G, Wang P (2009) Structural and Magnetic Characterization of Co and Ni Silicate Hydroxides in Bulk and in Nanostructures within Silica Aerogels. Chem Mater 21:945–953CrossRefGoogle Scholar
  32. 32.
    Loche D, Casula MF, Falqui A, Marras S, Corrias A (2010) Preparation of Mn, Ni, Co ferrite nanocomposite aerogels by an urea-assisted sol-gel procedure. J Nanosci Nanotechnol 10:1008–1016. doi:10.1166/jnn.2010.1907CrossRefGoogle Scholar
  33. 33.
    Carta D, Loche D, Mountjoy G, Navarra G, Corrias A (2008) NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: An X-ray absorption study. J Phys Chem C 112:15623–15630CrossRefGoogle Scholar
  34. 34.
    Carta D, Casula MF, Mountjoy G, Corrias A (2008) Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys 10:3108–3117CrossRefGoogle Scholar
  35. 35.
    Carta D, Casula MF, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A (2009) A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni). J Phys Chem C 113:8606–8615CrossRefGoogle Scholar
  36. 36.
    Dutta P, Dunn BC, Eyring EM, Shah N, Huffman GP, Manivannan A, Seehra S (2005) Characteristics of cobalt nanoneedles in 10% Co/Aerogel fischer-tropsch catalyst. Chem Mater 17:5183–5186CrossRefGoogle Scholar
  37. 37.
    Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu HB (2009) One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. J Am Chem Soc 131:4576–4577CrossRefGoogle Scholar
  38. 38.
    Al-Mutaseb SA, Ritter JA (2003) Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv Mater 15:101–114CrossRefGoogle Scholar
  39. 39.
    Leventis N, Chandrasekaran N, Sotirou-Leventis C, Mumtaz A (2009) Smelting in the age of nano: iron aerogels. J Mater Chem 19:63–65CrossRefGoogle Scholar
  40. 40.
    Balkis Ameen K, Rajasekar K, Rajasekharan T (2007) Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal Lett 119:289–295CrossRefGoogle Scholar
  41. 41.
    Tai Y, Murakami J, Tajiri K, Ohashi F, Date M, Tsubota S (2004) Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels. Appl Catal A 268:183–187CrossRefGoogle Scholar
  42. 42.
    Anderson K, Fernandez SC, Hardacre C, Marr PC (2004) Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C-C coupling. Inorg Chem Comm 7:73–76CrossRefGoogle Scholar
  43. 43.
    Martinez S, Moreno-Manas M, Vallribera A, Schubert U, Roig A, Molins E (2006) Highly dispersed nickel and palladium nanoparticle silica aerogels: sol-gel processing of tethered metal complexes and application as catalysts in the Mizoroki-Heck reaction. New J Chem 30:1093–1097CrossRefGoogle Scholar
  44. 44.
    Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M (2004) High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal B 47:111–126CrossRefGoogle Scholar
  45. 45.
    Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules 10:87–94CrossRefGoogle Scholar
  46. 46.
    Ameen KB, Rajasekharan T, Rajasekharan MV (2006) Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J Non-Cryst Sol 352:737–746CrossRefGoogle Scholar
  47. 47.
    Ayers MR, Song XY, Hunt AJ (1996) Preparation of nanocomposite materials containing WS2, δ-WN,Fe3O4, or Fe9S10 in a silica aerogel host. J Mater Sci 31:6251–6257CrossRefGoogle Scholar
  48. 48.
    Biener J, Baumann TF, Wang YM, Nelson EJ, Kucheyev SO, Hamza AV, Kemell M, Ritala M, Leskela M (2007) Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology 18:055303CrossRefGoogle Scholar
  49. 49.
    Kuthirummal N, Dean A, Yao C, Risen W (2008) Photo-formation of gold nanoparticles: Photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels. Spectrochim Acta, Part A 70:700–703CrossRefGoogle Scholar
  50. 50.
    Morley KS, Marr PC, Webb PB, Berry AR, Allison FJ, Moldovan G, Brown PD, Howdle SM (2002) Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J Mater Chem 12:1898–1905CrossRefGoogle Scholar
  51. 51.
    Morley KS, Licence P, Marr PC, Hyde JR, Brown PD, Mokaya R, Xia YD, Howdle SM (2004) Supercritical fluids: A route to palladium-aerogel nanocomposites. J Mater Chem 14:1212–1217CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Kang DF, Saquing C, Aindow M, Erkey, C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164CrossRefGoogle Scholar
  53. 53.
    Martinez S, Vallribera A, Cotet CL, Popovici M, Martin L, Roig A, Moreno-Manas M, Molins E (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki-Heck coupling reaction. New J Chem 29:1342–1345CrossRefGoogle Scholar
  54. 54.
    Moerke W, Lamber R, Schubert U, Breitscheidel B (1994) Metal Complexes in Inorganic Matrixes. 11. Composition of Highly Dispersed Bimetallic Ni, Pd Alloy Particles Prepared by Sol-Gel Processing: Electron Microscopy and FMR Study. Chem Mater 6:1659–1666CrossRefGoogle Scholar
  55. 55.
    Dai S, Ju YU, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 243–244Google Scholar
  56. 56.
    Smith DD, Sibille L, Cronise RJ, Noever DA (1998) Surface plasmon resonance evaluation of colloidal silver aerogel filters. J Non-Cryst Solids 225:330–334CrossRefGoogle Scholar
  57. 57.
    Tai Y, Watanabe M, Murakami J, Tajiri K (2007) Composite formation of thiol-capped Au nanoparticles and mesoporous silica prepared by a sol-gel method. J Mater Sci 42:1285–1292CrossRefGoogle Scholar
  58. 58.
    Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2:790–798Google Scholar
  59. 59.
    Brust M, Walker M, Bethell D, Sciffrin DJ, Whyman R (1994) Synthesis of Thiol Derivatised Gold Nanoparticles in a Two Phase Liquid/Liquid System. J Chem Soc Chem Commun 801–802Google Scholar
  60. 60.
    Tai Y, Tajiri K (2008) Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl Catal A 342:113–118CrossRefGoogle Scholar
  61. 61.
    Anderson M L, Morris C A, Stroud R M, Merzbacher C I, Rolison D R (1999) Colloidal gold aerogels: Preparation, properties, and characterization. Langmuir 15:674–681CrossRefGoogle Scholar
  62. 62.
    Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R (1999) Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 284:622–624CrossRefGoogle Scholar
  63. 63.
    Wallace J M, Stroud R M, Pietron J J, Long J W, Rolison D R (2004) The effect of particle size and protein content on nanoparticle-gold-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. J Non-Cryst Solids 350:31–38CrossRefGoogle Scholar
  64. 64.
    Wallace J M, Rice J K, Pietron J J, Stroud R M, Long J W, Rolison D R (2003) Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity (their is also a mistake for the pages for this reference. NanoLett 3:1463–1467CrossRefGoogle Scholar
  65. 65.
    Leventis N, Elder I A, Long G J, Rolison, D R (2002) Using nanoscopic hosts, magnetic guests, and field alignment to create anisotropic composite gels and aerogels. NanoLett 2:63–67CrossRefGoogle Scholar
  66. 66.
    Racka K, Gich M, Slawska-Waniewska A, Roig A, Molins E (2005) Magnetic properties of Fe nanoparticle systems. J Magn Magn Mater 290:127–130CrossRefGoogle Scholar
  67. 67.
    Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernst RD, Eyring EM, Shah N, Huffman GP (2005) Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Appl Catal A 278:233–238CrossRefGoogle Scholar
  68. 68.
    Casula MF, Corrias A, Paschina G (2003) Iron-cobalt-silica aerogel nanocomposite materials. J Sol-Gel Sci Technol 26:667–670CrossRefGoogle Scholar
  69. 69.
    Casula MF, Corrias A, Paschina G (2002) FeCo-SiO2 nanocomposite aerogels by high temperature supercritical drying. J Mater Chem 12:1505–1510CrossRefGoogle Scholar
  70. 70.
    Corrias A, Casula MF, Ennas G, Marras S, Navarra G, Mountjoy G (2003) X-ray absorption spectroscopy study of FeCo-SiO2 nanocomposites prepared by the sol-gel method. J Phys Chem B 107:3030–3039CrossRefGoogle Scholar
  71. 71.
    Casula MF, Corrias A, Navarra G (2003) An EXAFS study on iron-cobalt-silica nanocomposite materials prepared by the sol-gel method. J Sol-Gel Sci Technol 26:453–456CrossRefGoogle Scholar
  72. 72.
    Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S, Sangregorio C (2008) The influence of composition and porosity on the magnetic properties of FeCo-SiO2 nanocomposite aerogels. Phys Chem Chem Phys 10:1043–1052CrossRefGoogle Scholar
  73. 73.
    Carta D, Mountjoy G, Gass M, Navarra G, Casula MF, Corrias A (2007) Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix. J Chem Phys 127: 204705CrossRefGoogle Scholar
  74. 74.
    Falqui A, Corrias A, Gass M, Mountjoy G (2009) A Transmission Electron Microscopy Study of Fe-Co Alloy Nanoparticles in Silica Aerogel Matrix Using HREM, EDX, and EELS. Micros Microan 15:114–124CrossRefGoogle Scholar
  75. 75.
    Hund JF, Bertino MF, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13CrossRefGoogle Scholar
  76. 76.
    Corrias A, Casula MF, Falqui A, Paschina G (2004) Preparation and characterization of FeCo-Al2O3 and Al2O3 aerogels. J Sol-Gel Sci Technol 31:83–86CrossRefGoogle Scholar
  77. 77.
    Corrias A, Casula MF, Falqui A, Paschina G (2004) Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem Mater 16:3130–3138CrossRefGoogle Scholar
  78. 78.
    Corrias A, Navarra G, Casula MF, Marras S, Mountjoy, G (2005) An X-ray absorption spectroscopy investigation of the formation of FeCo alloy nanoparticles in Al2O3 xerogel and aerogel matrixes. J Phys Chem B 109:13964–13970CrossRefGoogle Scholar
  79. 79.
    Casula MF, Concas G, Congiu F, Corrias A, Falqui A, Spano G (2005) Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: Microstructural features and related magnetic properties. J Phys Chem B 109:23888–23895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di Scienze Chimiche and INSTMUniversità di Cagliari, Complesso Universitario di MonserratoMonserratoItaly

Personalised recommendations