The Weiszfeld Algorithm: Proof, Amendments, and Extensions

  • Frank PlastriaEmail author
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 155)


Some time in the early seventeenth century, the following geometrical optimization problem was posed:


Convex Function Convex Hull Directional Derivative Gravity Center Weber Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arriola R, Laporte G, Ortega FA (2005) The Weber problem in a multi-storey building. INFOR 43(3):157–169.Google Scholar
  2. Bajaj C (1988) The algebraic degree of geometric optimisation problems. Discrete and Comput Geom 3:177–191CrossRefGoogle Scholar
  3. Balas E, Yu CS (1982) A note on the Weiszfeld-Kuhn algorithm for the general Fermat problem. Management Science Report 484:1–16, Graduate School of Industrial Administration, Carnegie Mellon University, PittsburghGoogle Scholar
  4. Brimberg J (2003) Further notes on convergence of the Weiszfeld algorithm. Yugoslav J Oper Res 13:199–206CrossRefGoogle Scholar
  5. Brimberg J, Chen R, Chen D (1998) Accelerating convergence in the Fermat–Weber location problem. Oper Res Lett 22:151–157CrossRefGoogle Scholar
  6. Brimberg J, Hansen P, Mladenović N (2006) Decomposition strategies for large-scale continuous location–allocation problems IMA J Manag Math 17:307–316CrossRefGoogle Scholar
  7. Brimberg J, Hansen P, Mladenović N, Taillard ED (2000) Improvements and comparison of heuristics for solving the multisource Weber problem. Oper Res 48:444–460CrossRefGoogle Scholar
  8. Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with p distances. Oper Res 41:1153–1163CrossRefGoogle Scholar
  9. Cánovas L, Canavate R, Marín A (2002) On the convergence of the Weiszfeld algorithm. Math Program 93:327–330CrossRefGoogle Scholar
  10. Cera M, Ortega FA (2002) Locating the median hunter among n mobile prey on the plane. Inter J Ind Eng 9:6–15Google Scholar
  11. Chandrasekaran R, Tamir A (1989) Open questions concerning Weiszfeld’s algorithm for the Fermat-Weber location problem. Math Program 44:293–295CrossRefGoogle Scholar
  12. Chen R (1991) An improved method for the solution of the problem of location on a inclined plane. RAIRO Rech Oper—Oper Res 25:45–53Google Scholar
  13. Chen R (2001) Optimal location of a single facility with circular demand areas. Comput Math Appl 41:1049–1061CrossRefGoogle Scholar
  14. Cockayne EJ, Melzak ZA (1969) Euclidean constructibility in graph-minimization problems. Math Mag 42:206–208CrossRefGoogle Scholar
  15. Cooper L (1963) Location-allocation problems. Oper Res 11:331–343CrossRefGoogle Scholar
  16. Cooper L (1968) An extension of the generalized Weber problem. J Reg Sci 8:181–197CrossRefGoogle Scholar
  17. Cooper L, Katz IN (1981) The Weber problem revisited. Comput Math Appl 7:225–234CrossRefGoogle Scholar
  18. Dowling PD, Love RF (1986) Bounding methods for facilities location algorithms. Nav Res Logist Q 33:775–787CrossRefGoogle Scholar
  19. Dowling PD, Love RF (1987) An evaluation of the dual as a lower bound in facilities location problems. Inst Ind Eng Trans 19:160–166Google Scholar
  20. Drezner Z (1984) The planar two center and two median problems. Transp Sci 18:351–361CrossRefGoogle Scholar
  21. Drezner Z (1995) A note on accelerating the Weiszfeld procedure. Locat Sci 3:275–279CrossRefGoogle Scholar
  22. Drezner Z (2009) On the convergence of the generalized Weiszfeld algorithm. Ann Oper Res 167:327–336CrossRefGoogle Scholar
  23. Drezner T, Drezner Z (2004) Finding the optimal solution to the Huff based competitive location model. Comput Manag Sci 1:193–208CrossRefGoogle Scholar
  24. Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber problem. In Drezner Z, Hamacher H (eds) Facility Location: Applications and Theory. Springer, Berlin, pp. 1–136Google Scholar
  25. Drezner Z, Schaible S, Wesolowsky GO (1990) Queuing-location problems in the plane. Nav Res Logist Q 37:929–935CrossRefGoogle Scholar
  26. Drezner Z, Wesolowsky GO (1978) Facility location on a sphere. J Oper Res Soc 29:997–1004Google Scholar
  27. Drezner Z, Wesolowsky GO (1980) Optimal location of a facility relative to area demands. Nav Res Logist Q 27:199–206CrossRefGoogle Scholar
  28. Drezner Z, Wesolowsky GO (1991) The Weber problem on the plane with some negative weights. INFOR 29:87–99Google Scholar
  29. Eckhardt U (1980) Weber’s problem and Weiszfeld’s algorithm in general spaces. Math Program 18:186–196CrossRefGoogle Scholar
  30. Eilon S, Watson-Gandy CDT, Christofides N (1971) Distribution management: Mathematical modelling and practical analysis. Charles Griffin & Co., Ltd., LondonGoogle Scholar
  31. Elzinga DJ, Hearn DW (1983) On stopping rules for facilities location algorithms. Inst of Ind Eng Trans 15:81–83Google Scholar
  32. Fagnano GF (1775) Problemata quaedam ad methodum maximorum et minimorum spectantia, Nova Acta Eruditorum 1775 Mensis Iunii (published in 1779), 281–303Google Scholar
  33. Fernández J, Pelegrín B, Plastria F, Tóth B (2007) Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur J Oper Res 179:1274–1287CrossRefGoogle Scholar
  34. Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach (2nd edition). Prentice Hall, Englewood CliffsGoogle Scholar
  35. Franksen OI, Grattan-Guinness I (1989) The earliest contribution to location theory? Spatio-temporal equilibrium with Lamé and Clapeyron, 1829. Math Comput Simul 31:195–220CrossRefGoogle Scholar
  36. Frenk JBG, Melo MT, Zhang S (1994) A Weiszfeld method for a generalized p distance minisum location model in continuous space. Locat Sci 2:111–127Google Scholar
  37. Gass SA (2004) In Memoriam, Andrew (Andy) Vazsonyi: 1916–2003, OR/MS Today, February 2004,, see also Ann Oper Res 167:2–5 (2009)
  38. Gendreau M, Potvin J-Y (2008) Metaheuristics: a Canadian Perspective. INFOR 46:71–80Google Scholar
  39. Hoos HH, Stützle T (2005) Stochastic local search: foundations and applications. Elsevier, AmsterdamGoogle Scholar
  40. Hiriart-Urruty, J-B, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, BerlinGoogle Scholar
  41. Illgen A (1979) Das Verhalten von Abstiegsverfahren an einer Singularität des Gradienten. Mathematik, Operationsforschung und Statistik, Ser Optim 10:39–55CrossRefGoogle Scholar
  42. Juel H (1984) On a rational stopping rule for facilities location algorithms. Nav Res Logist Q 31:9–11CrossRefGoogle Scholar
  43. Katz IN (1969) On the convergence of a numerical scheme for solving some locational equilibrium problems. SIAM J Appl Math 17:1224–1231CrossRefGoogle Scholar
  44. Katz IN (1974) Local convergence in Fermat’s problem. Math Program 6:89–104CrossRefGoogle Scholar
  45. Katz IN, Cooper L (1980) Optimal location on a sphere. Comput Math Appl 6:175–196CrossRefGoogle Scholar
  46. Katz IN, Vogl SR (2010) A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem. Comput Math Appl 59:399–410CrossRefGoogle Scholar
  47. Kuhn H (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Methods of nonlinear programming. North-Holland, Amsterdam, pp. 38–54Google Scholar
  48. Kuhn H (1973) A note on Fermat’s problem. Math Program 4:98–107CrossRefGoogle Scholar
  49. Kuhn HW, Kuenne RE (1962) An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J Reg Sci 4:21–33CrossRefGoogle Scholar
  50. Kupitz YS, Martini H (1997) Geometric aspects of the generalized Fermat-Torricelli problem. In: Intuitive geometry, Bolyai Society, Math Stud 6:55–127Google Scholar
  51. Lamé G, Clapeyron BPE (1829) Mémoire sur l’application de la statique à la solution des problèmes relatifs à la théorie des moindres distances. Journal des Voies de Communications 10: 26–49. (In French—Memoir on the application of statics to the solution of problems concerning the theory of least distances.) For a translation into English see Franksen & Grattan-Guinness (1989)Google Scholar
  52. Launhardt W (1885) Mathematische Begründung der Volkswirtschaftslehre, Wilhelm Engelmann, LeipzigGoogle Scholar
  53. Levin Y, Ben-Israel A. (2002) The Newton bracketing method for convex minimization. Comput Optim and Appl 21:213–229CrossRefGoogle Scholar
  54. Li Y (1998) A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comput Optim Appl 10:219–242CrossRefGoogle Scholar
  55. Love RF, Dowling PD (1989) A new bounding method for single facility location models. Ann Oper Res 18:103–112CrossRefGoogle Scholar
  56. Love RF, Morris JG, Wesolowsky GO (1988) Facilities location: models & methods. North-Holland, New YorkGoogle Scholar
  57. Love RF, Yeong WY (1981) A stopping rule for facilities location algorithms. Am Inst Ind Eng Trans 13:357–362Google Scholar
  58. Miehle W (1958) Link-length minimization in networks. Oper Res 6:232–243CrossRefGoogle Scholar
  59. Morris JG, Verdini WA (1979) Minisum p distance location problems solved via a perturbed problem and Weiszfeld’s algorithm. Oper Res 27:1180–1188CrossRefGoogle Scholar
  60. Ostresh LM Jr (1975) An efficient algorithm for solving the two-center location-allocation problem. J Reg Sci 15:209–216CrossRefGoogle Scholar
  61. Ostresh LM Jr (1978a) Convergence and descent in the Fermat location problem. Transportation Science 12:153–164CrossRefGoogle Scholar
  62. Ostresh LM Jr (1978b) On the convergence of a class of iterative methods for solving the Weber location problem. Oper Res 26:597–609CrossRefGoogle Scholar
  63. Overton ML (1983) A quadratically convergent method for minimizing a sum of Euclidean norms. Math Program 27:34–63CrossRefGoogle Scholar
  64. Plastria F (1987) Solving general continuous single facility location problems by cutting planes. Eur J Oper Res 29:98–110CrossRefGoogle Scholar
  65. Plastria F (1992a) GBSSS, the generalized big square small square method for planar single facility location. Eur J Oper Res 62:163–174CrossRefGoogle Scholar
  66. Plastria F (1992b) When facilities coincide: exact optimality conditions in multifacility location. J Math Anal and Appl 169:476–498CrossRefGoogle Scholar
  67. Plastria F (1993) On destination optimality in asymmetric distance Fermat-Weber problems. Ann Oper Res 40:355–369CrossRefGoogle Scholar
  68. Plastria F, Elosmani M (2008) On the convergence of the Weiszfeld algorithm for continuous single facility location-allocation problems. TOP 16:388–406CrossRefGoogle Scholar
  69. Rado F (1988) The Euclidean multifacility location problem. Oper Res 36:485–492CrossRefGoogle Scholar
  70. Rautenbach D, Struzyna M, Szegedy C, Vygen J (2004) Weiszfeld’s algorithm revisited once again. Report 04946-OR, Research Institute for Discrete Mathematics, University of Bonn, GermanyGoogle Scholar
  71. Rockafellar T (1970) Convex analysis. Princeton University Press, Princeton, NJGoogle Scholar
  72. Rosen JB, Xue GL (1992) On the convergence of Miehle’s algorithm for the Euclidean multifacility location problem. Oper Res 40:188–191CrossRefGoogle Scholar
  73. Rosen JB, Xue GL (1993) On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem. Oper Res 41:1164–1171CrossRefGoogle Scholar
  74. Rosing K, Harris B (1992) Algorithmic and technical improvements: optimal solutions to the (generalized) multi-Weber problem. Pap in Reg Sci 71:331–352CrossRefGoogle Scholar
  75. Schärlig A (1973) About the confusion between the center of gravity and Weber’s optimum. Reg Urban Econ 13:371–382CrossRefGoogle Scholar
  76. Sturm R (1884) Über den Punkt kleinster Entfernungssumme von gegebenen Punkten. Journal für die reine und angewandte Mathematik 97:49–61. (In German: On the point of smallest distance sum from given points)Google Scholar
  77. Shi Y, Chang Q, Xu J (2007) Convergence of fixed point iteration for deblurring and denoising problem. Appl Math and Comput 189:1178–1185CrossRefGoogle Scholar
  78. Valkonen T (2006) Convergence of a SOR-Weiszfeld Type Algorithm for Incomplete Data Sets. Numer Funct Anal and Optim 27;931–952. See also Errata, same journal, (2008), volume 29:1201–1203CrossRefGoogle Scholar
  79. Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math Program 90:559–566CrossRefGoogle Scholar
  80. Vazsonyi A (2002) Which Door has the Cadillac. Writers Club Press, New YorkGoogle Scholar
  81. Vazsonyi A (2002) Pure mathematics and the Weiszfeld algorithm. Decision Line 33:12–13, Google Scholar
  82. Weber A (1909) Über den Standort der Industrien. Tübingen, Germany. (English translation: Friedrich CJ (translator) (1929), Theory of the location of industries. University of Chicago Press, Chicago)Google Scholar
  83. Weida NC, Richardson R, Vazsonyi A (2001) Operations analysis using Excel. Duxbury, Pacific GroveGoogle Scholar
  84. Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points données est minimum. Tôhoku Math J (first series) 43:355–386Google Scholar
  85. Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is minimum. Ann Oper Res 167:7–41CrossRefGoogle Scholar
  86. Wendell RE, Peterson EL (1984) A dual approach for obtaining lower bounds to the Weber problem. J Reg Sci 24:219–228CrossRefGoogle Scholar
  87. Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23Google Scholar
  88. Wu S (1994) A polynomial time algorithm for solving the Fermat-Weber location problem with mixed norms. Optimization 30:227–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics, Operational Research, Statistics and Information Systems for Management, MOSIVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations