Molecular Electronics: Challenges and Perspectives

  • Paolo LugliEmail author
  • Simone Locci
  • Christoph Erlen
  • Gyorgy Csaba
Part of the Nanostructure Science and Technology book series (NST)


Molecular electronics has lately attracted increasing attention due to some appealing features such as possibly very higher integration capabilities, their low production cost, flexibility in the substrate choice, and possibility for large-area deployment. Two parallel approaches characterize this field: on one side molecules can be contacted and their transport characteristics exploited to achieve electronic functionalities; on the other side existing device structures, as well as novel ones, can be realized using organic layers instead of or together with inorganic materials. While in the latter case theoretical investigations on such devices can be carried out on adapting conventional simulators to the new materials and physics involved, completely new tools have to be developed in the former case. In this chapter, the operational principles of molecular systems will be presented based on a series of theoretical results obtained from our groups. Challenges and perspectives are also discussed.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Organic Semiconductor Applied Bias Ring Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heath, J.R., Ratner, M.A.: Phys. Today 56, 43 (2003)CrossRefGoogle Scholar
  2. 2.
    Reimers, J.R., Picconnatto, C.A., Ellenbogen, J.C., Shashidhar, R. (eds.): Ann. N Y Acad. Sci. 1006, 227 (2003)Google Scholar
  3. 3.
    Tour, J.: Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  4. 4.
    Cuniberti, G., Fagas, G., Richter, K. (eds.): Lecture Notes in Physics, vol. 680. Springer, Berlin (2005)Google Scholar
  5. 5.
    Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: Science 280, 1716 (1998)CrossRefGoogle Scholar
  6. 6.
    Wada, Y., Proc. IEEE 89, 8 (2001)CrossRefGoogle Scholar
  7. 7.
    Tour, J.M., Zandt, W.L., Husband, C.P., Husband, S.M., Wilson, L.S., Franzon, P.D., Nackashi, D.P.: IEEE Trans. Nanotech. 1, 2 (2002)Google Scholar
  8. 8.
    Macucci, M., Iannacone, G., Bonci, L., Girlanda, M.: IEE Proc. Circuit Dev. Syst. 151, 5 (2004)Google Scholar
  9. 9.
    Chaudhary, A., Chen, D.Z., Hu, X.S., Niemeier, M.T., Ravichandran, R., Whitton, K.: IEEE Trans. Comp. Aided Des. Int. Cir. Sys. 26, 11 (2007)Google Scholar
  10. 10.
    Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974)CrossRefGoogle Scholar
  11. 11.
    Ellenbogen, J.C., Love, J.C.: Proc. IEEE 88(3), 386 (2000)CrossRefGoogle Scholar
  12. 12.
    Husband, C.P., Husband, S.M., Daniels, J.S., Tour, J.M.: IEEE Trans. Electron Devices 50(9), 1865 (2003)CrossRefGoogle Scholar
  13. 13.
    Skoeldberg, J., Önnheim, C., Wendin, G.: IEEE Trans. Circiuts. Syst. I 54, 2461 (2007)CrossRefGoogle Scholar
  14. 14.
    Kouchi Zhang, G.Q., Graef, M., van Roosmalen, F.: Proceedings IEEE 56th Electr. Comp. Tech. Conf. San Diego, CA, 151–157 (2006)Google Scholar
  15. 15.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.: Nanotechnology 4, 49 (1993)CrossRefGoogle Scholar
  16. 16.
    Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Proc. IEEE 91(11), 1940 (2003)CrossRefGoogle Scholar
  17. 17.
    Kuekes, P.J., Stewar, D.R., Williams, R.S.: Appl. J. Phys. 97, 034301 (2005)CrossRefGoogle Scholar
  18. 18.
    Walus, K., Jullien, G.A.: Proc. IEEE 94(6), 1225 (2006)CrossRefGoogle Scholar
  19. 19.
    Porod, W., Csaba, G., Csurgay, A.: Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and their Applications, 2002. Frankfurt/Main CNNA (2002)Google Scholar
  20. 20.
    Burke, P.J., Li, S., Yu, Z.: IEEE Trans. Nanotech. 5(4) (2006)Google Scholar
  21. 21.
    Strukov, D.B., Likharev, K.K.: Nanotechnology 16, 888 (2005)CrossRefGoogle Scholar
  22. 22.
    Strukov, D.B., Likharev, K.K.: IEEE Trans. Nanotech. 6(6), 696 (2007)CrossRefGoogle Scholar
  23. 23.
    Proceedings of the IEEE (vol. 97, no. 9) on Organic Electronics, September 2009Google Scholar
  24. 24.
    Forrest, R.: IEEE J. Sel. Top. Quant. Elect. 6(6), 1072 (2000)CrossRefGoogle Scholar
  25. 25.
    Haensch, W.: The Drift Diffusion Equation and its Applications in MOSFET Modeling, Springer, Wien (1991)Google Scholar
  26. 26.
    Erlen, C., Lugli, P.: IEEE Trans. Electron Devices 56, 546 (2009)CrossRefGoogle Scholar
  27. 27.
    Klauk, H., Halik, M., Zschieschang, U., Eder, F., Rohde, D., Schmid, G., Dehm, C.: IEEE Trans. Electron Devices 52(4), 618 (2005)CrossRefGoogle Scholar
  28. 28.
    Fix, W., Ullmann, A., Ficker, J., Clemens, W.: Appl. Phys. Lett. 81(9), 1735 (2002)CrossRefGoogle Scholar
  29. 29.
    Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Phys. Rev. B 65(165) 401(2002)Google Scholar
  30. 30.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK (1995)Google Scholar
  31. 31.
    Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J.I., Kubiak, C.P.: J. Chem. Phys. 109, 2874 (1998)CrossRefGoogle Scholar
  32. 32.
    Reed, M.A., Chen, J., Rawlett, A.M., Prince, D.W., Tour, J.M.: Appl. Phys. Lett. 78, 3735 (2001)CrossRefGoogle Scholar
  33. 33.
    Csaba, G., Lugli, P.: IEEE Trans. Nanotech. 8(3), (May 2009)Google Scholar
  34. 34.
    Chen, Y., Jung, G.-Y., Ohlberg, D.A.A, Li, X., Stewart, D.R., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F., Williams, R.S.: Nanotech. 14, 462 (2003)CrossRefGoogle Scholar
  35. 35.
    Kushmerick, J.G., Holt, D.B., Pollack, S.K., Ratner, M.A., Yang, J.C., Schull, T.L., Naciri, J., Moore, M.H., Shshidhar, R.: J. Am. Chem. Soc. 124, 10654 (2002)CrossRefGoogle Scholar
  36. 36.
    Reichert, J., Ochs, R., Beckmann, D., Weber, H.B., Mayor, M., Loehneysen, H.v.: Phys. Rev. Lett. 88, 176804 (2002)CrossRefGoogle Scholar
  37. 37.
    Xue, Y., Datta, S., Ratner, M.A.: J. Chem. Phys. 115, 4292 (2001)CrossRefGoogle Scholar
  38. 38.
    Di Ventra, M., Pantelides, S.T., Lang, N.D.: Phys. Rev. Lett. 84, 979 (2000)CrossRefGoogle Scholar
  39. 39.
    Frauenheim, T., Seifert, G., Elstner, M., Niehaus, T., Kohler, C., Amkreutz, M., Sternberg, M., Hajnal, Z., Di Carlo, A., Suhai, S.: J. Phys. Condens. Matter 14, 3015 (2002)CrossRefGoogle Scholar
  40. 40.
    Pecchia, A., Gheorghe, M., Di Carlo, A., Lugli, P., Niehaus, T.A., Frauenheim, Th., Scholz, R.: Phys. Rev. B. 68, 235321 (2003)CrossRefGoogle Scholar
  41. 41.
    Di Carlo, A., Gheorghe, M., Lugli, P., Stenberg, M., Seifert, G., Frauenheim, Th.: Physica B 314, 86 (2002)CrossRefGoogle Scholar
  42. 42.
    Lugli, P., Pecchia, A., Gheorghe, M., Latessa, L., Di Carlo, A.: Semicond. Sci. Technol. 19, S357 (2004)CrossRefGoogle Scholar
  43. 43.
    Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S., Seifert, G.: Phys. Rev. B 58, 7260 (1998)CrossRefGoogle Scholar
  44. 44.
    Porezag, D., Frauenheim, Th., Koehler, Th., Seifert, G., Kaschner, R.: Phys. Rev. B 51(12), 947 (1995)Google Scholar
  45. 45.
    Frauenheim, T., Seifert, G., Elstner, M., Niehaus, T., Kohler, C., Amkreutz, M., Sternberg, M., Hajnal, Z., Di Carlo, A., Suhai, S.: J. Phys. Condens. Matter. 14, 3015 (2002)CrossRefGoogle Scholar
  46. 46.
    Xue, Y., Datta, S., Ratner, M.: Chem. J. Phys. 281, 151 (2002)CrossRefGoogle Scholar
  47. 47.
    Di Carlo, A., Pecchia, A., Latessa, L., Frauenheim, T., Gotthard Seifert, Introducing Molecular Electronics, Lecture Notes in Phys. 680/2005, 153–184 (2005) DOI:  10.1007/3-540-31514-4_6
  48. 48.
    Pecchia, A., Di Carlo, A., Gagliardi, A., Sanna, S., Frauenheim, T., Gutierrez, R.: Nano Lett. 4, 2109 (2004)CrossRefGoogle Scholar
  49. 49.
    Pecchia, A., Di Carlo, A., Rep. Prog. Phys. 67, 1497 (2004)CrossRefGoogle Scholar
  50. 50.
    Maragakis, P., Barnett, R.L., Kaxiras, E., Elstner, M., Frauenheim, T.: Phys. Rev. B 66(241) 104 (2002)Google Scholar
  51. 51.
    Porezag, D., Pederson, M.R., Frauenheim, Th., Köhler, Th.: Phys. Rev. B 52, 14963 (1995)CrossRefGoogle Scholar
  52. 52.
    Pecchia, A., Latessa, L., Gagliardi, A., Frauenheim, Th., Di Carlo, A.: Chapter 8 The gDFTB tool for molecular electronics. In: Molecular and Nano Electronics: Analysis, Design and Simulation. Theoretical and Computational Chemistry, Vol. 17, Pages 205–232 (2007). doi: 10.1016/S1380-7323(07)80026-4 CrossRefGoogle Scholar
  53. 53.
    Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: J. Phys. C Solid State Phys. 5, 21 (1972)CrossRefGoogle Scholar
  54. 54.
    Galperin, M., Ratner, M., Nitzan, A.: Nano Lett. 4, 1605 (2004)CrossRefGoogle Scholar
  55. 55.
    Faleev, S.V., Stockman, M.I.: Phys. Rev. B 66(085) 318 (2002)Google Scholar
  56. 56.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many Particle Systems. Dover, New York, NY (1971)Google Scholar
  57. 57.
    Mahan, D.M.: Many Particle Physics. Plenum Press, New York NY (1981)Google Scholar
  58. 58.
    Haung, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors, vol. 123. Springer Series in Solid State Science Springer, NY (1996)Google Scholar
  59. 59.
    Schuster, S., Scarpa, G., Latessa, L., Lugli, P.: Phys. Stat. Solid C 5, 390 (2008)CrossRefGoogle Scholar
  60. 60.
    Crljen, Z., Grigoriev, A., Wendin, G., Stokbro, K.: Phys. Rev. B 71, 165316 (2005)CrossRefGoogle Scholar
  61. 61.
    Erlen, C., Lugli, P., Pecchia, A., Di Carlo, A.: Chapter 19 of Nano and Molecular Electronics Handbook. CRC Press (2007)Google Scholar
  62. 62.
    Solomon, G.C., Gagliardi, A., Pecchia, A., Frauenheim, T., Di Carlo, A., Reimers, J.R., Hush, N.S.: J. Chem. Phys. 124, 094704 (2006)CrossRefGoogle Scholar
  63. 63.
    Meir, Y., Wingreen, N.S.: Phys. Rev. Lett. 68, 2512 (1992)CrossRefGoogle Scholar
  64. 64.
    Elbing, M., Ochs, R., Koentopp, M., Fischer, M., von Hänisch, C., Weigend, F., Evers, F., Weber, H.B., Mayor, M.: PNAS 102(25), 8815–8820 (2005)CrossRefGoogle Scholar
  65. 65.
    Oleynik, I.I., Kozhushner, M.A., Posvyanskii, V.S., Yu, L.: Phys. Rev. Lett. 96, 096803 (2006)CrossRefGoogle Scholar
  66. 66.
    Stadler, R., Geskin, V., Cornil, J.: J. Phys. Condens. Matter 20, 374105 (2008)CrossRefGoogle Scholar
  67. 67.
    Tao, N.J.: Nature Nanotechnol. 1, 173 (2006)CrossRefGoogle Scholar
  68. 68.
    Tans, S.J., Verschueren, A.R.M., Dekker, C.: Nature 393 (7 May 1998)Google Scholar
  69. 69.
    Song, H., Kim, Y., Jang, Y.H., Jeong, H., Reed, M.A., Lee, T.: Nature 462(24/31) (December 2009)Google Scholar
  70. 70.
    Lortscher, E., Ciszek, J.W., Tour, J., Riel, H.: Small 2(8–9), 973–977 (2006)CrossRefGoogle Scholar
  71. 71.
    Chen, Y., Jung, G.-Y., Ohlberg, D.A.A., Li, X., Stewart, D.R., J.O, Jeppesen, K.A, Nielsen, Stoddart, J.F., Stanley Williams, R.: Nanotechnology 14, 462–468 (2003)CrossRefGoogle Scholar
  72. 72.
    Kuekes, P.J., Stewart, D.R., Williams, R.S.: J. Appl. Phys. 97, 034301 (2005)CrossRefGoogle Scholar
  73. 73.
    Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Proc. IEEE 91(11), 1940–1957 (2003)CrossRefGoogle Scholar
  74. 74.
    DeHon, A., Goldstein, S.C., Kuekes, P.J., Lincoln, P.: IEEE Trans. Nanotechnol. 4(2), 215–228 (March 2005)CrossRefGoogle Scholar
  75. 75.
    Coker, A., Taylor, V., Bhaduri, D., Shukla, S., Raychowdhury, A., Roy, K.: IEEE Trans. Nanotechnol. 7, 202–208 (March 2008)CrossRefGoogle Scholar
  76. 76.
    Ziegler, M.M., Stan, M.R.: IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on Nanotechnology, Washington, D.C. 323–327 (2002)Google Scholar
  77. 77.
    Ziegler, M.M., Stan, M.R.: IEEE Trans. Nanotechnol. 2(4), 217–230 (December 2003)CrossRefGoogle Scholar
  78. 78.
    Amsinck, C., Di Spigna, N., Sonkusale, S., Nackashi, D., Franzon, P.: 3rd Workshop on Nonsilicon Computation Munich, Germany (NSC-3,2004)Google Scholar
  79. 79.
    Cerofolini, G.F., Romano, E.: Appl. Phys. A 91, 181–210 (2008)CrossRefGoogle Scholar
  80. 80.
    Cerofolini, G.F., Arena, G., Camalleri, C.M., Galati, C., Reina, S., Renna, L., Mascolo, D.: Nanotechnology 16 1040–1047 (2005)CrossRefGoogle Scholar
  81. 81.
    Cerofolini, G.F., Mascolo, D.: Semicond. Sci. Technol. 21, 1315–1325 (2006)CrossRefGoogle Scholar
  82. 82.
    Vollhardt, K.P.C.: Organische Chemie. VCH-Verlag, Weinheim (1990)Google Scholar
  83. 83.
    Bruetting, W.: Physics of Organic Semiconductors. Wiley-VCH, Weinheim (2005)CrossRefGoogle Scholar
  84. 84.
    Hirsch, J.: J. Phys. C: Solid State Phys. 12 (1979)Google Scholar
  85. 85.
    Epstein, A.J., Lee, W.P., Prigodin, V.N.: Synt. Met. 117, 9–13 (2001)CrossRefGoogle Scholar
  86. 86.
    Zaumseil, J., Sirringhaus, H.: IEEE Trans. Semiconduct. Manufact. 14(3), 281–296 (2001)CrossRefGoogle Scholar
  87. 87.
    Pope, M., Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers. Oxford University Press, Oxford, New York, NY (2002)Google Scholar
  88. 88.
    Baessler, H., Schoenherr, G., Abkowitz, M., Pai, D.M.: Phys. Rev. B 26(6), 3105–3113 (1982)CrossRefGoogle Scholar
  89. 89.
    Bolognesi, A., Di Carlo, A., Lugli, P., Conte, G.: Synth. Met. 138, 95–100 (2003)CrossRefGoogle Scholar
  90. 90.
    Li, L., Meller, G., Kosina, H.: Microel. J. 38, 4751 (2007)Google Scholar
  91. 91.
    Olivier, Y., Lemaur, V., Brédas, J.L., Cornil, J.: J. Phys. Chem. A 110, 6356–6364 (2006)CrossRefGoogle Scholar
  92. 92.
    Yamashita, Y.: Sci. Technol. Adv. Mater. 10, 024313 (2009)CrossRefGoogle Scholar
  93. 93.
    Alam, M.A., Dodabalapur, A., Pinto, M.R.: IEEE Trans. Electron Devices 44(8), 1332–1337 (1997)CrossRefGoogle Scholar
  94. 94.
    Horowitz, G., Hajlaoui, R., Bouchriha, H., Bourguiga, R., Hajlaoui, M.: Adv. Mat. 10(12), 923–927 (1998)CrossRefGoogle Scholar
  95. 95.
    Locci, S., Morana, M., Orgiu, E., Bonfiglio, A., Lugli, P.: IEEE Trans. Electr. Dev. 55(10), (October 2008)Google Scholar
  96. 96.
    Stallinga, P., Gomes, H.L., Biscarini, F., Murgia, M., deLeeuw, D.M.: J. Appl. Phys. 96(9), 5277–5283 (2004)CrossRefGoogle Scholar
  97. 97.
    Stallinga, P., Gomes, H.L.: Synt. Met. 156, 1316–1326 (2006)CrossRefGoogle Scholar
  98. 98.
    Horowitz, G., Hajlaoui, R., Kouki, F.: Europ. Phys. J. Appl. Phys. 1, 361–367 (1998)CrossRefGoogle Scholar
  99. 99.
    Horowitz, G., Hajlaoui, M.E., Hajlaoui, R.: J. Appl. Phys. 87(9), 4456–4463 (2000)CrossRefGoogle Scholar
  100. 100.
    Vissenberg, M.C.J.M., Matters, M.: Phys. Rev. B 57(20), 964–967 (1998)CrossRefGoogle Scholar
  101. 101.
    Frenkel, J.: Phys. Rev. 54, 647–648 (1938)CrossRefGoogle Scholar
  102. 102.
    Dunlap, D.H., Parris, P.E., Kenkre, V.M.: Phys. Rev. Lett. 77(3), 542–545 (1996)CrossRefGoogle Scholar
  103. 103.
    Schein, L.B., Peled, A., Glatz, D.: J. Appl. Phys. 66(2), 686–692 (1989)CrossRefGoogle Scholar
  104. 104.
    Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., Vannikov, A.V.: Phys. Rev. Lett. 81(20), 4472–4475 (1998)CrossRefGoogle Scholar
  105. 105.
    Wang, L., Fine, D., Basu, D., Dodabalapur, A.: J. Appl. Phys. 101(054515), 1–8 (2007)Google Scholar
  106. 106.
    Hamadani, B.H., Natelson, D.: J. Appl. Phys. 95(3), 1227–1232 (2007)CrossRefGoogle Scholar
  107. 107.
    Hamadani, B.H., Richter, C.A., Gundlach, D.J., Kline, R.J., McCulloch, I., Heeney, M.: J. Appl. Phys. 102(044503), 1–7 (2007)Google Scholar
  108. 108.
    Snowden, C.M., Snowden, E.: Introduction to Semiconductor Device Modelling. World Scientific, Singapore (1987)Google Scholar
  109. 109.
    Schmechel, R., von Seggern, H.: Phys. Stat. Sol. (a) 201(6), 1215–1235 (2004)CrossRefGoogle Scholar
  110. 110.
    Yang, Y.S., Kim, S.H., Lee, J.I., Chu, H.Y., Do, L.M., Lee, H., Oh, J., Zyung, T., Ryu, M.K., Jang, M.S.: Appl. Phys. Lett. 80(9), 1595–1597 (2002)CrossRefGoogle Scholar
  111. 111.
    Kang, J.H., da Silva Filho, D., Bredas, J.L., Zhu, X.Y.: Appl. Phys. Lett. 86(152115), 1–3 (2005)Google Scholar
  112. 112.
    Northrup, J.E., Chabinyc, M.L.: Phys. Rev. B 68(041202), 1–4 (2003)Google Scholar
  113. 113.
    Goldmann, C., Gundlach, D.J., Batlogg, B.: Appl. Phys. Lett. 88(063501), 1–3 (2006)Google Scholar
  114. 114.
    Schockley, W., Read, W.T.: Phys. Rev. 87(5), 835–842 (1952)CrossRefGoogle Scholar
  115. 115.
    Hall, R.N.: Phys. Rev. 87, 387 (1952)CrossRefGoogle Scholar
  116. 116.
    Singh, Th.B., Marjanovi`c, N., Stadler, P., Auinger, M., Matt, G.J., Günes, S., Sariciftci, N.S., Schwödiauer, R., Bauer, S.: J. Appl. Phys. 97(083714), 1–5 (2005)Google Scholar
  117. 117.
    Gu, G., Kane, M.G., Doty, J.E., Firester, A.H.: Appl. Phys. Lett. 87(243512), 1–3 (2005)Google Scholar
  118. 118.
    Li, L., Meller, G., Kosina, H.: Solid State Electron. 51, 445–448 (2007)CrossRefGoogle Scholar
  119. 119.
    Lindner, Th., Paasch, G., Scheinert, S.: J. Appl. Phys. 98(114505), 1–9 (2005)Google Scholar
  120. 120.
    Paasch, G., Scheinert, S., Herasimovich, A., Hörselmann, I., Lindner, Th.: Phys. Stat. Sol. (a) 3, 534–548 (2008)CrossRefGoogle Scholar
  121. 121.
    Ahles, M., Schmechel, R., von Seggern, H.: Appl. Phys. Lett. 85, 4489 (2004)CrossRefGoogle Scholar
  122. 122.
    Erlen, C., Lugli, P., Fiebig, M., Schiefer, S., Nickel, B.: J. Comput. Electron. 5(4) (December 2006)Google Scholar
  123. 123.
    Berliocchi, M., Manenti, M., Bolognesi, A., Di Carlo, A., Lugli, P., Paolesse, R., Mandoy, F., Di Natale, C., Proietti, E., Petrocco, G., D’Amico, A.: Semicond. Sci. Technol. 19, 354, (2004).CrossRefGoogle Scholar
  124. 124.
    Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D.V., Theiss, S.D.: Appl. Phys. Lett. 82, 3964 (2003).CrossRefGoogle Scholar
  125. 125.
    Hoon Han, S., Cho, S.M., Kim, J.H., Won Choi, J., Jang, J., Hwan Oh, M.: Appl. Phys. Lett. 89(093504) (2006).Google Scholar
  126. 126.
    Kim, F.S., Guo, X., Watson, M.D., Jenekhe, S.A.: Adv. Mater. 21, 15 (2009)CrossRefGoogle Scholar
  127. 127.
    Smith, J., Hamilton, R., Heeney, M., de Leeuw, D.M., Cantatore, E., Anthony, J.E., McCulloch, I., Bradley, D.D.C., Anthopoulos, T.D.: Appl. Phys. Lett. 93(253301) (2008)Google Scholar
  128. 128.
    IEEE Standard for Test Methods for the Characterization of Organic Transistors and Materials, IEEE Std 1620–2008. (2008)
  129. 129.
    IEEE Standard for Test Methods for the Characterization of Organic Transistor-Based Ring Oscillators, IEEE Std 1620.1–2006. (2006)
  130. 130.
    Mabeck, J., Malliaras, G.: Anal. Bioanal. Chem. 384(34353) (2006)Google Scholar
  131. 131.
    Roberts, M.E., Mannsfeld, S.C.B., Queralt o, N., Reese, C., Locklin, J., Knoll, W., Bao, Z.N.: Proc. Natl. Acad. Sci. USA 105(1213439) (2008)Google Scholar
  132. 132.
    Myny, K., Beenhakkers, M.J., van Aerle, N.A.J.M., Gelinck, G.H., Genoe, J., Dehaene, W., Heremans, P.: IEEE ISSCC Dig. Tech. Papers 52 (2009)Google Scholar
  133. 133.
    Elfrink, R., Pop, V., Hohlfeld, D., Kamel, T., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., Caballero Guindo, L., Renaud, M., Penders, J. and van Schaijk, R.: First autonomous wireless sensor node powered by a vacuum-packaged piezoelectric MEMS energy harvester. In: IEEE International Electron Devices Meeting—IEDM, pp. 543–546. Baltimore, MD, USA, 7–9 Dec 2009Google Scholar
  134. 134.
    Gamota, D.R., Brazis, P., Kalyanasundaram, K., Zhang, J.: Printed Organic and Molecular Electronics, Kluwer Academic Publishers, New York (2004)Google Scholar
  135. 135.
    International Electronics Manufacturing Initiative (iNEMI) consortium. (2009)
  136. 136.
    Das, R., Harrop, P.: Printed and Thin Film Transistors and Memory 2009–2029, Updated in Q3 2010. IDTechEx, United Kingdom. (2010)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paolo Lugli
    • 1
    Email author
  • Simone Locci
    • 2
  • Christoph Erlen
    • 2
  • Gyorgy Csaba
    • 2
  1. 1.Institute for Nanoelectronics, Technische Universität MünchenMunichGermany
  2. 2.Institute for Nanoelectronics, Technische Universität MünchenMunichGermany

Personalised recommendations