Design of Wireless Health Platforms

  • Lawrence Au
  • Brett Jordan
  • Winston Wu
  • Maxim Batalin
  • William J. Kaiser


Wireless embedded platforms play a significant role in Wireless Health: For many hidden medical conditions, symptoms may not reveal during traditional clinical visits. Cumulative, free-living monitoring, where individuals are monitored continuously with the use of wireless electronics and sensors, is considered a potential solution for capturing additional physiological data (Bonato 2003). From chronic disease management to physical rehabilitation, these platforms have demonstrated their potential uses (Moy et al. 2003; Bonato 2005).


  1. Anliker U, Beutel J, Dyer M, Enzler R, Lukowicz P, Thiele L, Trster G (2004) A systematic approach to the design of distributed wearable systems. IEEE Trans Comput 53(8):1017–1033CrossRefGoogle Scholar
  2. Anliker U, Ward J, Lukowicz P, Troster G, Dolveck F, Baer M, Keita F, Schenker E, Catarsi F, Coluccini L, Belardinelli A, Shklarski D, Alon M, Hirt E, Schmid R, Vuskovic M (2004) Amon: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed 8(4):415–427. doi:10.1109/TITB.2004.837888CrossRefGoogle Scholar
  3. Au L, Wu W, Batalin M, Mclntire D, Kaiser W (2007) MicroLEAP: energy-aware wire-less sensor platform for biomedical sensing applications. In: Biomedical circuits and systems conference, 2007. BIOCAS 2007. IEEE, pp 158–162. doi:10.1109/BIOCAS.2007.4463333Google Scholar
  4. Au L, Wu W, Batalin M, Kaiser W (2008) Active guidance towards proper cane usage. In: 5th International summer school and Symposium on medical devices and biosensors, 2008. ISSS-MDBS 2008., pp. 205–208. doi:10.1109/ISSMDBS.2008.4575054Google Scholar
  5. Au L, Batalin M, Stathopoulos T, Bui A, Kaiser W (2009) Episodic sampling: towards energy-efficient patient monitoring with wearable sensors. In: 31st Annual international conference of the IEEE engineering in medicine and biology society (EMBC’09)Google Scholar
  6. Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. Lect Notes Comput Sci 3001/2004:1–17. doi:10.1007/b96922Google Scholar
  7. Bateni H, Maki BE (2005) Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil 86:134–145CrossRefGoogle Scholar
  8. Beutel J (2006) Fast-prototyping using the BTnode platform. In: Proceedings of the conference on design, automation and test in Europe (DATE’06)Google Scholar
  9. Bharatula NB, Anliker U, Lukowicz P, Trster G (2006) Architectural tradeoffs in wearable systems. In: Architecture of Computing Systems - ARCS 2006, ser. Lecture Notes in Computer Science, Grass W, Sick B, and Waldschmidt K, eds., vol. 3894. Springer Berlin/Heidelberg, pp 217–231Google Scholar
  10. Bonato P (2003) Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng Med Biol Mag 22(3):18–20. doi:10.1109/MEMB.2003.1213622CrossRefGoogle Scholar
  11. Bonato P (2005) Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil 2(2) Scholar
  12. Gao T, Greenspan D, Welsh M, Juang R, Alm A (2005) Vital signs monitoring and patient tracking over a wireless network. 27th annual international conference of the IEEE engineering in medicine and biology society, 2005, pp 102–105. doi:10.1109/IEMBS.2005.1616352Google Scholar
  13. Jovanov E, Milenkovic A, Otto C, Groen PD, Johnson B, Warren S, Taibi G (2005) A WBAN system for ambulatory monitoring of physical activity and health status: applications and challenges. In: Proceedings of the international conference on engineering in medicine and biology society (IEEE-EMBS), pp 3810–3813Google Scholar
  14. Kamijoh N, Inoue T, Olsen C, Raghunath M, Narayanaswami C (2001) Energy trade-offs in the ibm wristwatch computer. In: Proceedings of the fifth international symposium on wearable computers, 2001, pp 133–140. doi:10.1109/ISWC.2001.962115Google Scholar
  15. Kannus P, Parkkari J, Koskinen S, Palvanen SNM, Jrvinen M, Vuori I (1999) Fall-induced injuries and deaths among older adults. JAMA 281:1895–1899CrossRefGoogle Scholar
  16. Krause A, Ihmig M, Rankin E, Leong D, Gupta S, Siewiorek D, Smailagic A, Deisher M, Sengupta U (2005) Trading off prediction accuracy and power consumption for context-aware wearable computing. In:. Proceedings of the ninth IEEE international symposium on wearable computers, 2005, pp 20–26. doi:10.1109/ISWC.2005.52Google Scholar
  17. Labrosse JJ (2002) MicroC/OS II: the real-time kernel. CMP Books, Burlington, MAGoogle Scholar
  18. Malan D, Fulford-Jones TRF, Welsh M, Moulton S (2004) CodeBlue: an ad hoc sensor net-work infrastructure for emergency medical care. In: Proceedings of the MobiSys 2004 workshop applications mobile embedded systems (WAMES 2004), Boston, MA, pp 12–14Google Scholar
  19. Maurer U, Rowe A, Smailagic A, Siewiorek D (2006) eWatch: a wearable sensor and notication platform. In: International workshop on wearable and implantable body sensor networks, 2006, pp 4–145. doi:10.1109/BSN.2006.24Google Scholar
  20. McIntire D, Ho K, Yip B, Singh A, Wu W, Kaiser WJ (2006) The low power energy aware processing (LEAP) embedded networked sensor system. In: IPSN’06: Proceedings of the fifth international conference on information processing in sensor networks. ACM Press, New York, pp 449–457. doi:
  21. Medical Applications Guide (2007), TI’s Medical Applications Guide, Texas Instruments. URL: Scholar
  22. Moy M, Mentzer S, Reilly J (2003) Ambulatory monitoring of cumulative free-living activity. IEEE Eng Med Biol Mag 22(3):89–95. doi:10.1109/MEMB.2003.1213631CrossRefGoogle Scholar
  23. Nachman L, Kling R, Adler R, Huang J, Hummel V (2005) The intel mote platform: a bluetooth-based sensor network for industrial monitoring. In: Proceedings of the international conference on information processing in sensor networks (IPSN), Los Angeles, CAGoogle Scholar
  24. Pansiot J, Stoyanov D, McIlwraith D, Lo BP, Yang GZ (2007) Ambient and wearable sensor fusion for activity recognition in healthcare monitoring systems. In: 4th international workshop on wearable and implantable body sensor networks (BSN 2007)Google Scholar
  25. Park S, Jayaraman S (2003) Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag 22(3):41–48. doi:10.1109/MEMB.2003.1213625CrossRefGoogle Scholar
  26. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Welsh M, Bonato P (2007) Analysis of feature space for monitoring persons with parkinson’s disease with application to a wireless wearable sensor system. In: Engineering in Medicine and Biology Society, 2007. 29th annual international conference of the IEEE, pp 6290–6293. doi:10.1109/IEMBS.2007.4353793Google Scholar
  27. Rubenstein LZ, Josephson KR (2006) Falls and their prevention in elderly people: what does the evidence show? Med Clin North Am 90:807–824CrossRefGoogle Scholar
  28. Sattin RW, Nevitt MC (1993) Injuries in later life: epidemiology and environmental aspects. Oxford Textbook of Geriatric Medicine. Oxford University Press, New YorkGoogle Scholar
  29. Stager M, Lukowicz P, Troster G (2004) Implementation and evaluation of a low-power sound- based user activity recognition system. In: Proceedings of the eighth international symposium on wearable computers, 2004. ISWC 2004. 1, pp 138–141. doi:10.1109/ISWC.2004.25Google Scholar
  30. Steele BG, Belza B, Hunziker J, Holt L, Legro M, Coppersmith J, Buchner D, Lak- shminaryan S (2003) Monitoring daily activity during pulmonary rehabilitation using a triaxial accelerometer. J Cardiopulm Rehabil 23:139–142CrossRefGoogle Scholar
  31. Tu SP, McDonell MB, Spertus JA, Steele BG, Fihn SD (1997) A new self-administered questionnaire to monitor health-related quality of life in patients with COPD. Chest 112(3):614–622. doi:10.1378/chest.112.3.614. Google Scholar
  32. Webster JG (1997) Medical instrumentation: application and design. Wiley, New YorkGoogle Scholar
  33. Winters J, Wang Y (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22(3):56–65. doi:10.1109/MEMB.2003.1213627CrossRefGoogle Scholar
  34. Wu W (2008) MEDIC: an end-to-end biomedical system based on active sensor fusion. Ph.D. Thesis, University of California, Los AngelesGoogle Scholar
  35. Wu W, Batalin M, Au L, Bui A, Kaiser W (2007) Context-aware sensing of physiological signals. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE, pp 5271–5275. doi:10.1109/IEMBS.2007.4353531Google Scholar
  36. Wu W, Bui A, Batalin M, Liu D, Kaiser W (2007) Incremental diagnosis method for intelligent wearable sensor systems. IEEE Trans Inf Technol Biomed 11(5):553–562. doi:10.1109/TITB.2007.897579CrossRefGoogle Scholar
  37. Wu W, Au L, Jordan B, Stathopoulos T, Batalin M, Kaiser W, Vahdatpour A, Sarrafzadeh M, Fang M, Chodosh J (2008) The SmartCane system: an assistive device for geriatrics. In: BodyNets’08: proceedings of the ICST 3rd international conference on body area networks, pp 1–4. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lawrence Au
  • Brett Jordan
  • Winston Wu
  • Maxim Batalin
  • William J. Kaiser
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations