Family Influences on Children’s Well-Being: Potential Roles of Molecular Genetics and Epigenetics

  • Guang GuoEmail author
Part of the National Symposium on Family Issues book series (NSFI)


We address a number of questions related to the potential roles of ­molecular genetics and epigenetics in estimating family effects on children’s well-being. What is the nature of family effects? Where do we need genetics? What is our best evidence? What could we do at the moment and in the next 10 years? We review relevant advances in molecular genetics over the past few decades and discuss what these advances may contribute to social sciences. We focus on gene–environment interactions for delinquency. We define the concept and describe an empirical study. We also review an earlier animal gene–environment/experience study to understand the prospects of human gene–environment studies. Very soon, we may create a gigantic amount of genetic and epigenetic data, but appropriate ways of analyzing these data and proper interpretations of the findings remain enormously challenging.


Environment Interaction Binge Drinking Genetic Influence Variable Number Tandem Repeat Regular Meal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies ( Special acknowledgment is due to Andrew Smolen and John K. Hewitt of the Institute for Behavior Genetics, University of Colorado, for DNA isolation and genotyping. We gratefully acknowledge support from NIH P01-HD31921 to Add Health; R03 HD042490-02 to G.G.; R03 HD053385-01 to G.G.; and support from NSF, SES-0210389 to G.G.


  1. Barr, C. S., Newman, T. K., Lindell, S., Shannon, C., Champoux, M., Lesch, K. P., Suomi, S. J., Goldman, D., & Higley, J. D. (2004). Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Archives of General Psychiatry, 61, 1146–1152.PubMedCrossRefGoogle Scholar
  2. Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., Schwandt, M., Champoux, M., Lesch, K. P., Goldman, D., Suomi, S. J., & Higley, J. D. (2004). Rearing condition and rh5–HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733–738.PubMedCrossRefGoogle Scholar
  3. Bauman, K. E., & Ennett, S. T. (1996). On the importance of peer influence for adolescent drug use: Commonly neglected considerations. Addiction, 91, 185–198.PubMedCrossRefGoogle Scholar
  4. Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., & Herman, J. G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics, 10, 687–692.PubMedCrossRefGoogle Scholar
  5. Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., Champoux, M., Suomi, S. J., Linnoila, M. V., & Higley, J. D. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry, 7, 118–122.PubMedCrossRefGoogle Scholar
  6. Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92, 1170–1182.CrossRefGoogle Scholar
  7. Bonczar, T. P. (2003). Prevalence of imprisonment in the U.S. population, 1974–2001. Washington, DC: Bureau of Justice Statistics.Google Scholar
  8. Bottinger, E. P. (2007). Foundations, promises and uncertainties of personalized medicine. Mount Sinai Journal of Medicine, 74, 15–21.PubMedCrossRefGoogle Scholar
  9. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.PubMedCrossRefGoogle Scholar
  10. Chantala, K., Kalsbeek, W. D., & Andraca, E. (2004). Non-response in wave III of the Add Health study. Report on bias in Wave III sampling in the National Longitudinal Survey of Adolescent Health. Available online at:
  11. Collins, F. S., Morgan, M., & Patrinos, A. (2003). The human genome project: Lessons from large-scale biology. Science, 300, 286–290.PubMedCrossRefGoogle Scholar
  12. Dendukuri, N., Khetani, K., McIsaac, M., & Brophy, J. (2007). Testing for HER2-positive breast cancer: A systematic review and cost-effectiveness analysis. Canadian Medical Association Journal, 176, 1429–1434.PubMedCrossRefGoogle Scholar
  13. Fan, J. B., Oliphant, A., Shen, R., Kermani, B. G., Garcia, F., Gunderson, K. L., et al. (2003). Highly parallel SNP genotyping. Cold Spring Harbor Symposia on Quantitative Biology, 68, 69–78.Google Scholar
  14. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 1155–1158.PubMedCrossRefGoogle Scholar
  15. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.PubMedCrossRefGoogle Scholar
  16. Ginsburg, B. E., & Allee, W. C. (1942). Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiology and Zoology, 15.Google Scholar
  17. Gunderson, K. L., Stemmers, F. J., Lee, G., Mendoza, L. G., & Chee, M. S. (2005). A genome-wide scalable SNP genotyping assay using microarray technology. Nature Genetics, 37, 549–554.Google Scholar
  18. Guo, G., & Stearns, E. (2002). The social influences on the realization of genetic potential for intellectual development. Social Forces, 80, 881–910.CrossRefGoogle Scholar
  19. Guttmacher, A. E., & Collins, F. S. (2003). Welcome to the genomic era. New England Journal of Medicine, 349, 996–998.PubMedCrossRefGoogle Scholar
  20. Guttmacher, A. E., & Collins, F. S. (2005). Realizing the promise of genomics in biomedical research. Journal of the American Medical Association, 294, 1399–1402.PubMedCrossRefGoogle Scholar
  21. Hagan, J., & Foster, H. (2003). S/He’s a rebel: Toward a sequential stress theory of delinquency and gendered pathways to disadvantage in emerging adulthood. Social Forces, 82, 53–86.CrossRefGoogle Scholar
  22. Hannon, L. (2003). Poverty, delinquency, and educational attainment: Cumulative disadvantage or disadvantage saturation? Sociological Inquiry, 73, 575–594.CrossRefGoogle Scholar
  23. Hardenbol, P., Baner, J., Jani, M., Nilsson, M., Namsaraev, E. A., Karlin-Neumann, G. A., et al. (2003). Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnology, 21, 673–678.Google Scholar
  24. Harris, K. M., Duncan, G. J., & Boisjoly, J. (2002). Evaluating the role of nothing to lose attitudes on risky behavior in adolescence. Social Forces, 80, 1005–1039.CrossRefGoogle Scholar
  25. Harris, K. M., Florey, F., Tabor, J., Bearman, P. S., Jones, J., & Udry, J. R. (2003). The National Longitudinal Study of Adolescent Health: Research design. Available online at: vol. 2005.
  26. Haynie, D. L. (2001). Delinquent peers revisited: Does network structure matter? American Journal of Sociology, 106, 1013–1057.CrossRefGoogle Scholar
  27. Haynie, D. L. (2003). Contexts of risk? Explaining the link between girls’ pubertal development and their delinquency involvement. Social Forces, 82, 355–397.CrossRefGoogle Scholar
  28. Hernandez, L. M., & Blazer, D. G. (2006). Genes, behavior, and the social environment: Moving beyond the nature/nurture debate. Washington, DC: National Academies Press.Google Scholar
  29. Hindelang, M. J., Hirschi, T., & Weiss, J. G. (2001). Measuring delinquency. Thousand Oaks, CA: Sage.Google Scholar
  30. Hindelang, M. J. (1981). Variations in sex-race-age-specific incidence rates of offending. American Sociological Review, 46, 461–474.CrossRefGoogle Scholar
  31. Hindelang, M. J., Hirschi, T., & Weis, J. G. (1979). Correlates of delinquency—Illusion of discrepancy between self-report and official measures. American Sociological Review, 44, 995–1014.CrossRefGoogle Scholar
  32. Hindelang, M. J., Hirschi, T., & Weis, J. G. (2001). Measuring delinquency. Thousand Oaks, CA: Sage.Google Scholar
  33. Hood, R., & Sparks, R. (1970). Key issues in criminology. Wallop, NH: BAS.Google Scholar
  34. Hunter, D. J. (2005). Gene–environment interactions in human diseases. Nature Reviews Genetics, 6, 287–298.PubMedCrossRefGoogle Scholar
  35. The_International_HapMap_Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–320.Google Scholar
  36. Khoury, M. J., Adams, M. J., & Flanders, W. D. (1988). An epidemiologic approach to ecogenetics. American Journal of Human Genetics, 42, 89–95.PubMedGoogle Scholar
  37. Lubin, B., Larsen, R. M., & Matarazzo, J. D. (1984). Patterns of psychological test usage in the United States – 1935–1982. American Psychologist, 39, 451–454.CrossRefGoogle Scholar
  38. Meaney, M. J., Szyf, M., & Seckl, J. R. (2007). Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends in Molecular Medicine, 13, 269–277.PubMedCrossRefGoogle Scholar
  39. Murphy, F. J., Shirly, M. M., & Witmer, H. L. (1946). The incidence of hidden delinquency. American Journal of Orthopsychiatry, 16, 686–696.PubMedCrossRefGoogle Scholar
  40. Nelson, H. D., Huffman, L. H., Fu, R. W., & Harris, E. L. (2005). Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: Systematic evidence review for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 143, 362–379.PubMedGoogle Scholar
  41. Neumark-Sztainer, D., Story, S., Ackard, D., Moe, J., & Perry, C. (2000). The family meal: Views of adolescents. Journal of Nutrition Education, 32, 329–334.CrossRefGoogle Scholar
  42. Neumark-Sztainer, D., Wall, M., Story, M., & Fulkerson, J. A. 2004. Are family meal patterns associated with disordered eating behaviors among adolescents? Journal of Adolescent Health, 35, 350–359.PubMedCrossRefGoogle Scholar
  43. Pennisi, E. (2007). Breakthrough of the year – Human genetic variation. Science, 318, 1842–1843.PubMedCrossRefGoogle Scholar
  44. Rice, J. A., & Brown, L. F. (1967). Validity of Peabody picture vocabulary test in a sample of low IQ children. American Journal of Mental Deficiency, 71, 602–607.PubMedGoogle Scholar
  45. Robison, S. M. (1936). Can delinquency be measured? New York: Columbia University Press.Google Scholar
  46. Ross, J. S., & Fletcher, J. A. (1998). The HER-2/neu oncogene in breast cancer: Prognostic factor, predictive factor, and target for therapy. Stem Cells, 16, 413–428.PubMedCrossRefGoogle Scholar
  47. Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., Erdos, M. R., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341–1345.PubMedCrossRefGoogle Scholar
  48. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.PubMedCrossRefGoogle Scholar
  49. Steemers, F. J., Chang, W., Lee, G., Barker, D. L., Shen, R., & Gunderson, K. L. (2006). Whole-genome genotyping with the single-base extension assay. Nature Methods, 3, 31–33.Google Scholar
  50. Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Jonsdottir, T., Walters, G. B., et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics, 39, 770–775.PubMedCrossRefGoogle Scholar
  51. Thornberry, T. P., & Krohn, M. D. (2000). The self-report method for measuring delinquency and crime. Criminal Justice 2000 (vol. 4, pp. 33–83). Washington, DC: National Institute of Justice.Google Scholar
  52. Tourangeau, R., & Smith, T. W. (1996). Asking sensitive questions – The impact of data collection mode, question format, and question context. Public Opinion Quarterly, 60, 275–304.CrossRefGoogle Scholar
  53. Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. J. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8, 355–367.PubMedCrossRefGoogle Scholar
  54. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. J. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623–628.PubMedCrossRefGoogle Scholar
  55. Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.PubMedCrossRefGoogle Scholar
  56. Wright, D. L., Aquilino, W. S., & Supple, A. J. (1998). A comparison of computer-assisted and paper-and-pencil self-administered questionnaires in a survey on smoking, alcohol, and drug use. Public Opinion Quarterly, 62, 331–353.CrossRefGoogle Scholar
  57. Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 316, 1336–1341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of SociologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations