Bio-Farms for Nutraceuticals pp 74-98

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 698)

Dietary Phytochemicals and Human Health

  • Justyna Krzyzanowska
  • Anna Czubacka
  • Wieslaw Oleszek

Abstract

This chapter is a comprehensive review of the health promoting phytochemicals commonly found in our daily food. These include carotenoids, phenolics, phytoestrogenes, polyunsaturated fatty acids, conjugated linoleic acids, tocols, allicin, glucosinolates, limonene and capsaicinoids. The review encompasses the main food sources of these chemicals in the diet, the possible mechanisms of their activity, evidence for potential health promoting activity and possible harmful effects. The newly emerged interest in these phytochemicals in animal nutrition as substitutes for synthetic antibiotic growth promoters has also been addressed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones WHS ed. Hippocrates. Nutriment 1923; 351.Google Scholar
  2. 2.
    Funk C, The etiology of deficiency diseases. State Medicine 1912; 20:341–368.Google Scholar
  3. 3.
    Bidlack WR, Wang W. Designing functional food to enhance health. z Bidlack WR, Omaye ST, Meskin MS et al eds, Phytochemicals As Bioactive Agents. Lancaster: Technomic Publishing Co., Inc, 2000:241–270.Google Scholar
  4. 4.
    Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 2004; 43:228–265.PubMedCrossRefGoogle Scholar
  5. 5.
    Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta 2005; 1740:101–107.PubMedGoogle Scholar
  6. 6.
    Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins and betalains-characteristics, biosynthesis, processing and stability. Crit Rev Food Sci Nutr 2000; 40(3): 173–289.PubMedCrossRefGoogle Scholar
  7. 7.
    Rao AV, Rao LG. Carotenoids and human health. Invited review. Pharmacological Research 2007; 55:207–216.PubMedCrossRefGoogle Scholar
  8. 8.
    Tapiero H, Tew KD, Nguyen BG et al. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 2002; 56:200–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Schieber A, Carle R. Occurrence of carotenoid cis-isomers in food: technological, analytical and nutritional implications. Trends Food Sci Technol 2005; 16:416–422.CrossRefGoogle Scholar
  10. 10.
    Stahl W, van den Berg H, Arthur J et al. Bioability and metabolism. Mol Aspects Med 2002; 23:39–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Rock CL. Carotenoids: biology and treatment. Phannncol Ther 1997; 75(3):185–197.CrossRefGoogle Scholar
  12. 12.
    Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005; 26:459–516.PubMedCrossRefGoogle Scholar
  13. 13.
    Roldán JM, Luque de Castro MD. Lycopene: the need for better methods for characterization and determination. Trends Analyt Chem 2007; 26(2): 163–170.CrossRefGoogle Scholar
  14. 14.
    Tapiero H, Townsend DM, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 2004; 58:100–110.PubMedCrossRefGoogle Scholar
  15. 15.
    Palace VP, Khaper N, Qin Q et al. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med 1999; 26(5/6):746–761.PubMedCrossRefGoogle Scholar
  16. 16.
    Eskin NAM, Tamir S. Dictionary of Nutraceuticals and Functional Foods, Taylor and Francis Group, Boca Raton, London, New York 2006; 1–507.Google Scholar
  17. 17.
    Omoni AO, Aluko RE. The anticarcinogenic and anti-atherogenic effects of lycopene: a review. Trends Food Sci Technol 2005; 16:344–350.CrossRefGoogle Scholar
  18. 18.
    Astorg P. Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 1997; 8:406–413.CrossRefGoogle Scholar
  19. 19.
    Nichenametla SN, Taruscio TG, Barney DL et al. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46:161–183.PubMedCrossRefGoogle Scholar
  20. 20.
    Bachioca M, Biagioti E, Ninfali P. Nutritional and technological reasons for evaluating the antioxidant capacity of vegetable products. Ital J Food Sci 2006; 2(18):209–217.Google Scholar
  21. 21.
    Erlund I. Review of the flavonoids quercetin, hesperetin and naringenin. Dietary sources, bioactivities, bioavailability and epidemiology. Nutrition Research 2004; 24:851–874.CrossRefGoogle Scholar
  22. 22.
    Lin JK, Weng MS. Flavonoids as Nutraceuticals. In: Grotewold E. ed. The Science of Flavonoids. New York: Springer, 2006:213–238.CrossRefGoogle Scholar
  23. 23.
    Le Marchand L. Cancer preventive effects of flavonoids—a review. Biomed Pharmacother 2002; 56:296–301.PubMedCrossRefGoogle Scholar
  24. 24.
    Yao LH, Jiang YM, Shi J et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004; 59:113–122.PubMedCrossRefGoogle Scholar
  25. 25.
    Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 2006; 41:1727–1746.PubMedCrossRefGoogle Scholar
  26. 26.
    Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content and metabolism. Nutrition 2002; 18:75–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002; 13:572–584.PubMedCrossRefGoogle Scholar
  28. 28.
    Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000; 55:481–504.PubMedCrossRefGoogle Scholar
  29. 29.
    Di Carlo G, Mascolo N, Izzo AA et al. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sciences 1999; 65(4):337–353.PubMedCrossRefGoogle Scholar
  30. 30.
    Russo M, Tedesco I, Iacomino G et al. Dietary phytochemicals in chemoprevention of cancer. Curr Med Chem—Immun, Endoc and Metab Agents 2005; 5:61–72.CrossRefGoogle Scholar
  31. 31.
    Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancers. Biochem Pharmacol 2006; 71:1397–1421.PubMedCrossRefGoogle Scholar
  32. 32.
    Orallo F. Comparative studies of the antioxidant effects of cis-and trans-resveratrol. Curr Med Chem 2006; 13:87–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Vitaglione P, Morisco F, Caporaso N et al. Dietary antioxidant compoundsand liver health. Crit Rev Food Sci Nutr 2004; 44:575–586.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin JHJ, Crotty S, Warren P et al. Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the antiviral properties of phytoestrogens. Phytochemistry 2007; 68:266–274.PubMedCrossRefGoogle Scholar
  35. 35.
    Cornwell T, Cohick W, Raskin I. Dietary phytoestrogens and health. Phytochemistry 2004; 65:995–1016.PubMedCrossRefGoogle Scholar
  36. 36.
    McCue P, Shetty K. Potential health benefits of soybean isoflavonoids and related phenolic antioxidants. In: Shetty K, Paliyath G, Pometto AL, Levin RE, eds. Functional Foods and Biotechnology. London: Taylor and Francis Group, 2007:133–150.Google Scholar
  37. 37.
    Brouns F. Soya isoflavones: a new and promising ingredient for the health foods sector. Food Res Int 2002; 35:187–193.CrossRefGoogle Scholar
  38. 38.
    Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology and Therapeutics 2001; 90:157–177.PubMedCrossRefGoogle Scholar
  39. 39.
    Oleszek W, Stochmal A, Janda B. Concentration of isoflavones and other phenolics in the aerial parts of Trifolium species. J Agric Food Chem 2007; 55:8095–8100.PubMedCrossRefGoogle Scholar
  40. 40.
    Knight DC, Eden JA. A review of the clinical effects of phytoestrogens. Obstet Gynecol 1996; 87(5/2):897–904.PubMedGoogle Scholar
  41. 41.
    Davis SR, Murkies AL, Wilcox G. Phytoestrogens in clinical practice. Integr Med 1998; 1(1):27–34.CrossRefGoogle Scholar
  42. 42.
    Tempfer CB, Bentz EK, Leodolter S et al. Phytoestrogens in clinical practice: a review of the literature. Fertil Steril 2007; 87(6):1243–1249.PubMedCrossRefGoogle Scholar
  43. 43.
    Fuss E. Lignans in plant cell and organ cultures: an overview. Phytochemistry Reviews 2003; 2:307–320.CrossRefGoogle Scholar
  44. 44.
    Duncan AM, Phipps WR, Kurzer MS. Phytoestrogens. Best Pract Res Clin Endocrinol Metab 2003; 17(2):253–271.PubMedCrossRefGoogle Scholar
  45. 45.
    Lof M, Weiderpass E. Epidemiologic evidence suggests that dietary phytoestrogen intake is associated with reduced risk of breast, endometrial and prostate cancers. Nutr Res 2006; 26:609–619.CrossRefGoogle Scholar
  46. 46.
    Beck V, Rohr U, Jungbauer A. Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol 2005; 94:499–518.PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki S, Umezawa T. Biosynthesis of lignans and norlignans. J Wood Sci 2007; 53:273–284.CrossRefGoogle Scholar
  48. 48.
    Meagher LP, Beecher GR. Assessment of data on the lignan content of foods. J Food Compost Anal 2000; 13:935–947.CrossRefGoogle Scholar
  49. 49.
    Niemeyer HB, Metzler M. Differences in the antioxidant activity of plant and mammalian lignans. J Food Eng 2003; 56:255–256.CrossRefGoogle Scholar
  50. 50.
    El-Badry AM, Graf R, Clavien PA. Omega 3—Omega 6: what is right for the liver? J Hepatol 2007; 47:718–725.PubMedCrossRefGoogle Scholar
  51. 51.
    Balk EM, Lichtenstein AH, Chung M et al. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 2006; 189:19–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Kinney AJ. Metabolic engineering in plants for human health and nutrition. Curr Opin Biotechnol 2006; 17:130–138.PubMedCrossRefGoogle Scholar
  53. 53.
    Sijtsma L, de Swaaf ME. Biotechnological production and applications of omega-3 polyunsatureted fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 2004; 64:146–153.PubMedCrossRefGoogle Scholar
  54. 54.
    Mazza M, Pomponi M, Janiri L et al. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:12–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Domingo JL. Omega-3 fatty acids and the benefits of fish consumption: is all that glitters gold? Environ Int 2007; 33:993–998.PubMedCrossRefGoogle Scholar
  56. 56.
    Beltz BS, Tlusty MF, Benton JL et al. Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 2007; 415:154–158.PubMedCrossRefGoogle Scholar
  57. 57.
    Bhattacharya A, Banu J, Rahman M et al. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789–810.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagao K, Yanagita T. Conjugated fatty acids in food and their health benefits. J Biosci Bioeng 2005; 100(2): 152–157.PubMedCrossRefGoogle Scholar
  59. 59.
    Whigham LD, Cook ME, Atkinson RL. Conjugated linoleic acid: implications for human health. Pharmacol Res 2000; 42(6):503–510.PubMedCrossRefGoogle Scholar
  60. 60.
    Sieber R, Collomb M, Aeschlimann A et al. Impact of microbial cultures on conjugated linoleic acid in dairy products–a review. Int Dairy J 2004; 14:1–15.CrossRefGoogle Scholar
  61. 61.
    Cook ME, Pariza M. The role of conjugated linoleic acid (CLA) in health. Int Dairy J 1998; 8:459–462.CrossRefGoogle Scholar
  62. 62.
    Rainer L, Heiss CJ. Conjugated linoleic acid: health implications and effects on body composition. J Am Diet Assoc 2004; 104(6):963–968.PubMedCrossRefGoogle Scholar
  63. 63.
    Collomb M, Schmid A, Sieber R et al. Conjugated linoleic acids in milk fat: variation and physiological effects. Int Dairy J 2006; 16:1347–1361.CrossRefGoogle Scholar
  64. 64.
    Evans ME, Brown JM, McIntosh MK. Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J Nutr Biochem 2002; 13:508–516.PubMedCrossRefGoogle Scholar
  65. 65.
    Sen CK, Khanna S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci 2006; 78:2088–2098.PubMedCrossRefGoogle Scholar
  66. 66.
    Zingg JM. Vitamin E: an overview of major research directions. Mol Aspects Med 2007; 28(5–6):400–422.PubMedCrossRefGoogle Scholar
  67. 67.
    Saldeen K, Saldeen T. Importance of tocopherols beyond α-tocopherol: evidence from animal and human studies. Nutr Res 2005; 25:877–889.CrossRefGoogle Scholar
  68. 68.
    Theriault A, Chao JT, Wang Q et al. Tocotrienol: a review of its therapeutic potential. Clin Biochem 1999; 32(5):309–319.PubMedCrossRefGoogle Scholar
  69. 69.
    Kline K, Lawson KA, Yu W et al. Vitamin E and breast cancer prevention: current status and future potential. J Mammary Gland Biol Neoplasia 2003; 8(1):91–102.PubMedCrossRefGoogle Scholar
  70. 70.
    Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother 2005; 59:380–387.PubMedCrossRefGoogle Scholar
  71. 71.
    Reiter E, Jiang Q, Christen S. Anti-inflammatory properties of α-and λ-tocopherol. Mol Aspects Med 2007; 28(5–6):668–691.PubMedCrossRefGoogle Scholar
  72. 72.
    Lapointe A, Couillard C, Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem 2006; 17:645–658.PubMedCrossRefGoogle Scholar
  73. 73.
    Azzi A, Gysin R, Kempná P et al. The role of α-tocopherol in preventing disease: from epidemiology to molecular events. Mol Aspects Med 2003; 24:325–336.PubMedCrossRefGoogle Scholar
  74. 74.
    Crowell PL. Monoterpenes in breast cancer chemoprevention. Breast Cancer Res Treat 1997; 46:191–197.PubMedCrossRefGoogle Scholar
  75. 75.
    Vigushin DM, Poon GK, Boddy A et al. Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Chemother Pharmacol 1998; 42:111–117.PubMedCrossRefGoogle Scholar
  76. 76.
    Merle H, Moro M, Amparo Blázquez M et al. Taxonomical contribution of essential oils in mandarins cultivars. Biochem Syst Ecol 2004; 32:491–497.CrossRefGoogle Scholar
  77. 77.
    Flamini G, Tebano M, Cioni PL. Volatiles emission patterns of different plant organs and pollen of citrus limon. Anal Chim Acta 2007; 589:120–124.PubMedCrossRefGoogle Scholar
  78. 78.
    Tirillini B, Pellegrino R, Pagiotti R et al. Volatile compounds in different cultivars of Apium graveolens L. Ital J Food Sci. 2004; 4(16):477–482.Google Scholar
  79. 79.
    Ferreira D, Marais JPJ, Slade D. Phytochemistry of the mopane, colophospermum mopane. Phytochemistry 2003; 64:31–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Friedman MI, Preti G, Deems RO et al. Limonene in expired lung air of patients with liver disease. Dig Dis Sci 1994; 39(8):1672–1676.PubMedCrossRefGoogle Scholar
  81. 81.
    Corzo-Martínez M, Corzo N, Villamiel M. Biological properties of onions and garlic. Trends Food Sci Technol 2007; 18:609–625.CrossRefGoogle Scholar
  82. 82.
    Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr 2006; 136:716S–725S.PubMedGoogle Scholar
  83. 83.
    Wu CC, Chung JG, Tsai SJ et al. Differential effects of allyl Sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem Toxicol 2004; 42:1937–1947.PubMedCrossRefGoogle Scholar
  84. 84.
    Sato T, Miyata G. The Nutraceutical Benefit, part IV, Garlic Nutrition 2000; 16(9):787–788.Google Scholar
  85. 85.
    Jakubowski H. On the Health Benefits of Allium sp. Nutrition 2003; 19(2):167–168.PubMedCrossRefGoogle Scholar
  86. 86.
    Anthony JP, Fyfe L, Smith H. Plant active components—a resource for antiparasitic agents? Trends Parasitol 2005; 21(10):299–322.CrossRefGoogle Scholar
  87. 87.
    Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 2006; 57:303–333.PubMedCrossRefGoogle Scholar
  88. 88.
    Johnson IT. Glucosinolates in the human diet. Bioavailability and implication for health. Phytochemistry Reviews 2002; 1:183–188.CrossRefGoogle Scholar
  89. 89.
    Surh YJ, Ahn SH, Kim KCh et al. Metabolism of capsaicinoids: evidence for aliphatic hydroxylation and its pharmacological implications. Life Sci 1995; 56(16):305–311.CrossRefGoogle Scholar
  90. 90.
    Surh YJ, Lee SS. Capsaicin in hot chili pepper: carcinogen, cocarcinogen or anticarcinogen? Fd Chem Toxic 1996; 34(3):313–316.CrossRefGoogle Scholar
  91. 91.
    Surh YJ, Lee SS. Capsaicin, a double-edged sword: toxicity, metabolism and chemopreventive potential. Life Sci 1995; 56(22):1845–1855.PubMedCrossRefGoogle Scholar
  92. 92.
    Andlauer W, Fürst P. Nutraceuticals: a piece of history, present status and outlook. Food Res Int 2002; 35(2–3):171–176.CrossRefGoogle Scholar
  93. 93.
    Menrad K. Market and marketing of functional food in Europe. J Food Eng 2002; 56:181–188.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Justyna Krzyzanowska
    • 1
  • Anna Czubacka
  • Wieslaw Oleszek
  1. 1.Institute of Soil Science and Plant CultivationPulawyPoland

Personalised recommendations