Advertisement

A Differential Equation Model to Investigate the Dynamics of the Bovine Estrous Cycle

  • H. M. T. BoerEmail author
  • C. Stötzel
  • S. Röblitz
  • H. Woelders
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)

Abstract

To investigate physiological factors affecting fertility of dairy cows, we developed a mechanistic mathematical model of the dynamics of the bovine estrous cycle. The model consists of 12 (delay) differential equations and 54 parameters. It simulates follicle and corpus luteum development and the periodic changes in hormones levels that regulate these processes. The model can be used to determine the level of control exerted by various system components on the functioning of the system. As an example, it was investigated which mechanisms could be candidates for regulation of the number of waves of follicle development per cycle. Important issues in model building and validation of our model were parameter identification, sensitivity analysis, stability, and prediction of model behavior in different scenarios.

References

  1. 1.
    Boer HMT, Veerkamp RF, Beerda B, Woelders H (2010) Estrous behavior in dairy cows: identification of underlying mechanisms and gene functions. Animal 4(3):446–453CrossRefGoogle Scholar
  2. 2.
    Vetharaniam I, Peterson AJ, McNatty KP, Soboleva TK (2010) Modelling female reproductive function in farm animals. Animal Rep Sci 122:164–173CrossRefGoogle Scholar
  3. 3.
    Boer HMT, Stötzel C, Röblitz S, Deuflhard P, Veerkamp RF, Woelders H (2011) A simple mathematical model of the bovine estrous cycle: follicle development and endocrine interactions. J Theor Biol 278(1):20–31PubMedCrossRefGoogle Scholar
  4. 4.
    Selgrade JF, Schlosser PM (1999) A model for the production of ovarian hormones during the menstrual cycle. Fields Inst Commun 21:429–446Google Scholar
  5. 5.
    Reinecke I, Deuflhard P (2007) A complex mathematical model of the human menstrual cycle. J Theor Biol 247:303–330PubMedCrossRefGoogle Scholar
  6. 6.
    Guglielmi N, Hairer E (2005) RADAR5. http://www.unige.ch/hairer/software.htmlS. Accessed 7 Sept 2009
  7. 7.
    Boer HMT, Stötzel C, Röblitz S, Deuflhard P, Veerkamp RF, Woelders H (2010) A simple mathematical model of the bovine estrous cycle: follicle development and endocrine interactions. Technical Report 10–06, Konrad-Zuse-Zentrum für Informationstechnik BerlinGoogle Scholar
  8. 8.
    Deuflhard P (2004) Newton methods for nonlinear problems. Affine invariance and adaptive algorithms. Springer Series in Computational Mathematics, vol 35. Springer, BerlinGoogle Scholar
  9. 9.
    Townson DH, Tsang PCW, Butler WR, Frajblat M, Griel LC Jr, Johnson CJ, Milvae RA, Niksic GM, Pate JL (2002) Relationship of fertility to ovarian follicular waves before breeding in dairy cows. J Animal Sci 80(4):1053–1058Google Scholar
  10. 10.
    Revah I, Butler WR (1996) Prolonged dominance of follicles and reduced viability of bovine oocytes. J Rep Fert 106(1):39–47CrossRefGoogle Scholar
  11. 11.
    Bleach ECL, Glencross RG, Knight PG (2004) Association between ovarian follicle development and pregnancy rates in dairy cows undergoing spontaneous oestrous cycles. Reproduction 127(5):621–629PubMedCrossRefGoogle Scholar
  12. 12.
    Boer HMT, Röblitz S, Stötzel C, Veerkamp RF, Kemp B, Woelders H (2011) Mechanisms regulating follicle wave patterns in the bovine estrous cycle investigated with a mathematical model. J Dairy Sci 94 In PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • H. M. T. Boer
    • 1
    • 2
    Email author
  • C. Stötzel
    • 3
  • S. Röblitz
    • 3
  • H. Woelders
    • 1
  1. 1.Animal Breeding and Genomics CentreWageningen UR Livestock ResearchLelystadThe Netherlands
  2. 2.Adaptation Physiology Group, Department of Animal SciencesWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Numerical Analysis and Modeling, Computational Systems Biology GroupZuse Institute Berlin (ZIB)BerlinGermany

Personalised recommendations