Advertisement

Prenatal Viral Infection in Mouse: An Animal Model of Schizophrenia

  • S. Hossein Fatemi
  • Timothy D. Folsom
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 2)

Abstract

Schizophrenia is a major debilitating disease with a lifetime prevalence of 1% throughout the world. There is robust epidemiologic evidence indicating that environmental contributions, such as prenatal infections, may lead to the genesis of schizophrenia. Our laboratory has developed an animal model using human influenza virus to infect pregnant Balb/c and C57BL/6 mice intranasally at selected time points during pregnancy to investigate the role of prenatal viral infection on brain development. In this chapter, we review our research using this model and the changes in brain structure, gene expression, neurochemistry, and behavior that are observed in the offspring of infected dams. Our observations are consistent with findings observed in subjects with schizophrenia, providing additional evidence for the role of prenatal viral infection in the etiology of this disease.

Keywords

Schizophrenia Prenatal viral infection Brain Mouse Microarray 

Notes

Acknowledgments

Grant support by National Institute of Child Health and Human Development (#5R01-HD046589-04 and 3R01-HD046589-04S1) to SHF is gratefully acknowledged. Portions of this article are reprinted from: (1) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Abu-Odeh, D., Mori, S., Huang, H., et al. (2009). Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res, 112(1–3), Copyright (2009), with permission from Elsevier; (2) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Huang, H., Oishi, K., & Mori, S. (2009). Prenatal viral infection of mice at E16 causes changes in gene expression in hippocampi of the offspring. Eur Neuropsychopharmacol, 19(9), Copyright (2009), with permission from Elsevier; (3) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Huang, H., Oishi, K., Mori, S., et al. (2008). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophr Res, 99(1–3), Copyright (2008), with permission from Elsevier; (4) with kind permission from Springer Science+Business Media: Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Sidwell, R. W. (2008). The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum, 7; and (5) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Sidwell, R. W. (2009). Viral regulation of aquaporin 4, connexin 43, microcephalin, and nucleolin. Schizophr Res, 98(1–3), Copyright (2009), with permission from Elsevier.

References

  1. Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci, 22, 3708–3719.PubMedGoogle Scholar
  2. Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A, 97, 8104–8109.PubMedCrossRefGoogle Scholar
  3. Acuff-Smith, K. D., & Vorhees, C. V. (1999). Neurobehavioral teratology. In R. J. M. Niesink, R. M. A. Jaspers, L. M. W. Kornet, J. M. VanRee, & H. A. Tilson (Eds.), Introduction to neurobehavioral toxicology, food and environment (pp. 26–69). Boca Raton, FL: CRC.Google Scholar
  4. Adams, W., Kendell, R. E., & Hare, E. T. (1993). Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia: An analysis of Scottish, English, and Danish data. Br J Psychiatry, 163, 522–534.PubMedCrossRefGoogle Scholar
  5. Andreasen, N. C. (1999). A unitary model of schizophrenia. Bleuler’s “Fragmented phrene” as schizencephaly. Arch Gen Psychiatry, 56, 781–793.PubMedCrossRefGoogle Scholar
  6. Arnold, S. E., & Trojanowski, J. Q. (1996). Recent advanced in defining the neuropathology of schizophrenia. Acta Neuropath, 92, 217–231.PubMedCrossRefGoogle Scholar
  7. Avishai-Eliner, S., Brunson, K. L., Sandman, C. A., & Baram, T. Z. (2002). Stressed-out or in (utero)? Trends Neurosci, 25, 518–524.PubMedCrossRefGoogle Scholar
  8. Barr, C. E., Mednick, S. A., & Munk-Jorgensen, P. (1990). Exposure to influenza epidemics during gestation and adult schizophrenia: A 40-year study. Arch Gen Psychiatry, 47, 869–874.PubMedCrossRefGoogle Scholar
  9. Blond, J. L., Besème, F., Duret, L., Bouton, O., Bedin, F., Perron, H., et al. (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol, 73, 1175–1185.PubMedGoogle Scholar
  10. Boksa, P., & Luheshi, G. N. (2003). On the use of animal modeling to study maternal infection during pregnancy and prenatal cytokine exposure as risk factors for schizophrenia. Clin Neurosci, 3, 339–346.CrossRefGoogle Scholar
  11. Boyd, J. H., Pulver, A. E., & Stewart, W. (1986). Season of birth: Schizophrenia and bipolar disorder. Schizophr Bull, 12, 173–186.PubMedCrossRefGoogle Scholar
  12. Boyer, P., Phillips, J. L., Rousseau, F. L., & Ilivitsky, S. (2007). Hippocampal abnormalities and memory deficits: New evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev, 54, 92–112.PubMedCrossRefGoogle Scholar
  13. Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophr Bull, 32, 200–202.PubMedCrossRefGoogle Scholar
  14. Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., et al. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry, 61, 774–780.PubMedCrossRefGoogle Scholar
  15. Chung, C., Tallerico, T., & Seeman, P. (2003). Schizophrenia hippocampus has elevated expression of chondrex glycoprotein gene. Synapse, 50, 29–34.PubMedCrossRefGoogle Scholar
  16. Crespo-Facorro, B., Barbadillo, L., Pelayo-Terán, J. M., & Rodríguez-Sánchez, J. M. (2007). Neuropsychological functioning and brain structure in schizophrenia. Int Rev Psychiatry, 19, 325–336.PubMedCrossRefGoogle Scholar
  17. Do, K. Q., Lauer, C. J., Schreiber, W., Zollinger, M., Gutteck-Amsler, U., Cuenod, M., et al. (1995). Gamma-glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem, 65, 2652–2662.PubMedCrossRefGoogle Scholar
  18. Erlenmeyer-Kimling, L., Folnegovic, Z., Hrabak-Zerjavic, V., Borcic, B., Folnegovic-Smalc, V., & Susser, E. (1994). Schizophrenia and prenatal exposure to the 1957 A2 influenza epidemic in Croatia. Am J Psychiatry, 151, 1496–1498.PubMedGoogle Scholar
  19. Fahy, T. A., Jones, P. B., & Sham, P. C. (1993). Schizophrenia in Afro-Caribbeans in the UK ­following prenatal exposure to the 1957 A2 influenza epidemic. Schizophr Res, 6, 98–99.CrossRefGoogle Scholar
  20. Fatemi, S. H., Earle, J. A., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., et al. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cell Mol Neurobiol, 22, 25–33.PubMedCrossRefGoogle Scholar
  21. Fatemi, S. H., Earle, J., & McMenomy, T. (2000). Reduction in Reelin immunoreactivity in ­hippocampus of subjects with schizophrenia, bipolar disorder, and major depression. Mol Psychiatry, 5, 654–663.PubMedCrossRefGoogle Scholar
  22. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., et al. (1999). Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry, 4, 145–154.PubMedCrossRefGoogle Scholar
  23. Fatemi, S. H., Emamian, E. S., Sidwell, R. W., Kist, D. A., Stary, J. M., Earle, J. A., et al. (2002). Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in developing brains of neonatal mice. Mol Psychiatry, 7, 633–640.PubMedCrossRefGoogle Scholar
  24. Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Sidwell, R. W. (2008a). Viral regulation of ­aquaporin 4, connexin 43, microcephalin and nucleolin. Schizophr Res, 98, 163–177.PubMedCrossRefGoogle Scholar
  25. Fatemi, S. H., Laurence, J. A., Araghi-Niknam, M., Stary, J. M., Schulz, S. C., Lee, S., et al. (2004). Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res, 69, 317–323.PubMedCrossRefGoogle Scholar
  26. Fatemi, S. H., Pearce, D. A., Brooks, A., & Sidwell, R. (2003). cDNA microarray studies of prenatal virally induced brain disorders in mouse. Stanley Proteomics and Genomes Meeting.Google Scholar
  27. Fatemi, S. H., Pearce, D. A., Brooks, A. I., & Sidwell, R. W. (2005). Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: A potential animal model for schizophrenia and autism. Synapse, 57, 91–99.PubMedCrossRefGoogle Scholar
  28. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Huang, H., Oishi, K., Mori, S., et al. (2008b). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophr Res, 99, 56–70.PubMedCrossRefGoogle Scholar
  29. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Sidwell, R. W. (2008c). The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum, 7, 279–294.PubMedCrossRefGoogle Scholar
  30. Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Huang, H., Oishi, K., Mori, S., 2009a. Prenatal viral infection of mice at E16 causes changes in gene expression in the hippocampi of the offspring. Eur Neuropsychopharmacol , 19, 648–653.Google Scholar
  31. Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Abu-Odeh, D., Mori, S., Huang, H., Oishi, K., 2009b. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res, 112, 46–53.Google Scholar
  32. Fatemi, S. H., Sidwell, R., Akhter, P., Sedgwick, J., Thuras, P., & Barley, K. (1998). Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice. Synapse, 29, 84–88.PubMedCrossRefGoogle Scholar
  33. Fatemi, S. H., Sidwell, R., Kist, D., Akhter, P., Bailey, K., Thuras, P., et al. (1998). Differential expression of synaptosome-associated protein 25 kDa (SNAP-25) in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Res, 800, 1–9.PubMedCrossRefGoogle Scholar
  34. Fatemi, S. H., Stary, J. M., Earle, J. A., Araghi-Niknam, M., & Eagan, E. (2005). GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res, 72, 109–122.PubMedCrossRefGoogle Scholar
  35. Geyer, M. A., Braff, D. L., & Swerdlow, N. R. (1999). Startle-response measures of information processing in animals: Relevance to schizophrenia. In M. Haug & R. E. Whalen (Eds.), Animal models of human emotion and cognition (pp. 103–116). Washington, DC: APA.CrossRefGoogle Scholar
  36. Gong, X., Jia, M., Ruan, Y., Shuang, M., Liu, J., Wu, S., et al. (2004). Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatr Genet, 127, 113–116.CrossRefGoogle Scholar
  37. Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A, 98, 4746–4751.PubMedCrossRefGoogle Scholar
  38. Hare, E. H., Price, J. S., & Slater, E. (1972). Schizophrenia and season of birth. Br J Psychiatry, 120, 125–126.Google Scholar
  39. Hashimoto, T., Volk, D. W., Eggan, S. M., Mirnics, K., Pierri, J. N., Sun, Z., et al. (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci, 23, 6315–6326.PubMedGoogle Scholar
  40. Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., & Benes, F. M. (2002). Differential hippocampal expression of glutamic acid decarboxylase 67&67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry, 59, 521–529.PubMedCrossRefGoogle Scholar
  41. Hogan, B., Beddington, R., Constantini, F., & Lacy, E. (1994). Manipulating the mouse embryo. A laboratory manual. New York: CSHL.Google Scholar
  42. Holson, R. R., Adams, J., & Ferguson, S. A. (1999). Gestational stage-specific effects of retinois acid exposure in the rat. Neurotoxicol Teratol, 21, 393–402.PubMedCrossRefGoogle Scholar
  43. Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M., et al. (1998). A decrease of Reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A, 95, 15718–15723.PubMedCrossRefGoogle Scholar
  44. Juckel, G., Gallinat, J., Riedel, M., Sokullu, S., Schulz, C., Moller, H. J., et al. (2003). Serotonergic dysfunction in schizophrenia assessed by the loudness dependence measure of primary auditory cortex evoked activity. Schizophr Res, 64, 115–124.PubMedCrossRefGoogle Scholar
  45. Juckel, G., Gudlowski, Y., Müller, D., Özgürdal, S., Brüne, M., Gallinat, J., et al. (2008). Loudness dependence of the auditory evoked N1/P2-component as an indicator of serotonergic dysfunction in patients with schizophrenia – a replication study. Psychiatry Res, 158, 79–82.PubMedCrossRefGoogle Scholar
  46. Karlsson, H., Bachmann, S., Schroder, J., McArthur, J., Torrey, E. F., & Yolken, R. H. (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A, 98, 4634–4639.PubMedCrossRefGoogle Scholar
  47. Kaufmann, W. (2000). Developmental neurotoxicity. In G. J. Krinke (Ed.), The laboratory rat (pp. 227–250). New York: Academic.CrossRefGoogle Scholar
  48. Kendell, R. E., & Kemp, I. W. (1989). Maternal influenza in the etiology of schizophrenia. Arch Gen Psychiatry, 46, 878–882.PubMedCrossRefGoogle Scholar
  49. Koch, M. (1999). The neurobiology of startle. Prog Neurbiol, 59, 107–128.CrossRefGoogle Scholar
  50. Kunugi, H., Nanko, S., & Takei, N. (1995). Schizophrenia following in utero exposure to the 1957 influenza epidemics in Japan. Am J Psychiatry, 152, 450–452.PubMedGoogle Scholar
  51. Lewis, D. A. (2001). Retroviruses and the pathogenesis of schizophrenia. Proc Natl Acad Sci USA, 94, 4293–4294.CrossRefGoogle Scholar
  52. Lipska, B. K., Jaskiw, G. E., & Weinberger, D. R. (1993). Postpubertal emergency of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage:A potential animal model of schizophrenia. Neuropsychopharmacology, 9, 67–75.PubMedGoogle Scholar
  53. Lipska, B. K., Khaing, Z. Z., & Weinberger, D. R. (1999). Neonatal hippocampal damage in the rat: A neuristic model of schizophrenia. Psychiatr Ann, 29, 157–160.Google Scholar
  54. Machon, R. A., Mednick, S. A., & Schulsinger, F. (1983). The interaction of seasonality, place of birth, genetic risk and subsequent schizophrenia in a high risk sample. Br J Psychiatry, 143, 383–388.PubMedCrossRefGoogle Scholar
  55. McGrath, J. J., Pemberton, M., & Welham, J. L. (1994). Schizophrenia and the influenza epidemics of 1954, 1957 and 1959: A Southern hemisphere study. Schizophr Res, 14, 1–8.PubMedCrossRefGoogle Scholar
  56. Mednick, S. A., Huttunen, M. O., & Macon, R. A. (1994). Prenatal influenza infections and adult schizophrenia. Schizophr Bull, 20, 263–267.PubMedCrossRefGoogle Scholar
  57. Mednick, S. A., Machon, R. A., & Huttunen, M. O. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry, 45, 189–192.PubMedCrossRefGoogle Scholar
  58. Menninger, K. A. (1928). The schizophrenic syndromes as a product of acute infectious disease. Arch Neurol Psychiatry, 20, 464–481.CrossRefGoogle Scholar
  59. Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., et al. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci, 26, 4752–4762.PubMedCrossRefGoogle Scholar
  60. Mirnics, K., & Lewis, D. A. (2001). Genes and subtypes of schizophrenia. Trends Mol Med, 7, 169–174.CrossRefGoogle Scholar
  61. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., & Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron, 28, 53–67.PubMedCrossRefGoogle Scholar
  62. Molanova, A., & Blaskovic, D. (1975). The influence of influenza infection of pregnant mice on the development of their fetuses. Acta Virol, 19, 259.Google Scholar
  63. Morgane, P. J., Austin-LaFrance, R. J., Bronzino, J. D., Tonkiss, J., & Galler, J. R. (1992). Malnutrition and the developing central nervous system. In R. L. Isaacson & R. F. Jensen (Eds.), The vulnerable brain and environmental risks, volume 1: Malnutrition and hazard assessment (pp. 3–44). New York: Plenum.CrossRefGoogle Scholar
  64. Nicotera, P., Brune, B., & Bagetta, G. (1997). Nitric oxide: Inducer or suppresser of apoptosis? Trends Pharmacol Sci, 189–190.PubMedGoogle Scholar
  65. O’Callaghan, E., Gibson, T., & Colohan, H. A. (1991). Season of birth in schizophrenia: Evidence for confinement of an excess of winter births to patients without a family history of mental disorder. Br J Psychiatry, 158, 764–769.PubMedCrossRefGoogle Scholar
  66. Pallast, E. G., Jongbloet, P. H., & Straatman, H. M. (1994). Excess seasonality of births among patients with schizophrenia and seasonal ovopathy. Schizophr Bull, 20, 269–276.PubMedCrossRefGoogle Scholar
  67. Pulver, A. E., Liang, K. Y., & Wolyniec, P. S. (1992). Season of birth among siblings of schizophrenic patients. Br J Psychiatry, 160, 71–75.PubMedCrossRefGoogle Scholar
  68. Rajkowska, G., Miguel-Hidalgo, J. J., Makkos, Z., Meltzer, H., Overholser, J., & Stockmeier, C. (2002). Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res, 57, 127–138.PubMedCrossRefGoogle Scholar
  69. Rami, A., Jansen, S., Giesser, I., & Winckler, J. (2003). Post-ischemic activation of caspase-3 in the rat hippocampus: Evidence of an axonal and dendritic localization. Neurochem Int, 43, 211–223.PubMedCrossRefGoogle Scholar
  70. Rodier, P. M. (1980). Chronology of neuron development: Animal studies and their clinical ­implications. Dev Med Child Neurol, 22, 525–545.PubMedCrossRefGoogle Scholar
  71. Romijn, H. J., Hofman, M. A., & Gramsbergen, A. (1991). At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev, 26, 61–67.PubMedCrossRefGoogle Scholar
  72. Sanjuan, J., Tolosa, A., Gonzalez, J. C., Aguilar, E. J., Perez-Tur, J., Najera, C., et al. (2006). Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatr Genet, 16, 67–72.PubMedCrossRefGoogle Scholar
  73. Selten, J. P. C. J., & Sleats, J. P. J. (1994). Evidence against maternal influenza as a risk factor for schizophrenia. Br J Psychiatry, 164, 674–676.PubMedCrossRefGoogle Scholar
  74. Sham, P. C., O’Callaghan, E., & Takei, N. (1992). Schizophrenia following prenatal exposure to influenza epidemics between 1939 and 1960. Br J Psychiatry, 160, 461–466.PubMedCrossRefGoogle Scholar
  75. Shi, L., Fatemi, S. H., Sidwell, R. W., & Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci, 23, 297–302.PubMedGoogle Scholar
  76. Sodhi, M. S., & Sanders-Bush, E. (2004). Serotonin and brain development. Int Rev Neurobiol, 59, 111–174.PubMedCrossRefGoogle Scholar
  77. Stober, G., Franzek, E., & Beckmann, J. (1992). The role of maternal infectious diseases during pregnancy in the aetiology of schizophrenia in offspring. Eur Psychiatry, 7, 147–152.Google Scholar
  78. Su, J., Wang, L., Yuan, L., Reutiman, T. J., Folsom, T. D., Smee, D., et al. (2008). Impairment of synaptic plasticity in offspring of virally infected mouse progeny. Int J Neuropsychopharmacol, 11(S1):264.Google Scholar
  79. Susser, E. S., Brown, A. S., & Gorman, J. M. (1999). Prenatal exposures in schizophrenia. Washington, DC: American Psychiatric Press.Google Scholar
  80. Susser, E., Lin, S. P., & Brown, A. S. (1994). No relation between risk of schizophrenia and prenatal exposure to influenza in Holland. Am J Psychiatry, 151, 922–924.PubMedGoogle Scholar
  81. Susser, E., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., et al. (1997). Schizophrenia after prenatal famine. Arch Gen Psychiatry, 53, 25–31.CrossRefGoogle Scholar
  82. Swerdlow, N. R., & Geyer, M. A. (1998). Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull, 24, 285–301.PubMedCrossRefGoogle Scholar
  83. Takei, N., Mortensen, P. B., Klaening, U., Murray, R. M., Sham, P. C., O’Callaghan, E., et al. (1994). Relationship between in utero exposure to influenza epidemic and risk of schizophrenia in Denmark (letter). Schizophr Res, 11, 95.Google Scholar
  84. Takei, N., Sham, P. C., & O’Callaghan, E. (1994). Prenatal exposure to influenza and the development of schizophrenia: Is the effect confined to females? Am J Psychiatry, 151, 117–119.PubMedGoogle Scholar
  85. Takei, N., Van Os, J., & Murray, R. M. (1995). Maternal exposure to influenza and risk of schizophrenia: A 22-year study from The Netherlands. J Psychiatr Res, 29, 435–445.PubMedCrossRefGoogle Scholar
  86. Tkachev, D., Mimmack, M. L., Ryan, M. M., Wayland, M., Freeman, T., Jones, P. B., et al. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798–805.PubMedCrossRefGoogle Scholar
  87. Toro, C. T., Hallak, J. E., Dunham, J. S., & Deakin, J. F. (2006). Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett, 404, 276–281.PubMedCrossRefGoogle Scholar
  88. Torrey, E. F., Bowler, A. E., Taylor, E. H., & Gottesman, I. I. (1994). Schizophrenia and manic depression disorders: The biological roots of mental illness as revealed by a landmark study of identical twins. New York: Basic Books.Google Scholar
  89. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., et al. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport, 10, 1329–1334.PubMedCrossRefGoogle Scholar
  90. Vawter, M. P., Crook, J. M., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Becker, K. G., et al. (2002). Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: A preliminary study. Schizophr Res, 58, 11–20.PubMedCrossRefGoogle Scholar
  91. Webster, M. J., O’Grady, J., Kleinman, J. E., & Weickert, C. S. (2005). Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience, 133, 453–461.PubMedCrossRefGoogle Scholar
  92. Wilson, J. G. (1964). General principles of experimental teratology. In: Congenital Malformations Proceedings of the First International Conference. Philadelphia: Lippincott.Google Scholar
  93. Winter, C., Reutiman, T. J., Folsom, T. D., Sohr, R., Wolf, R. J., Juckel, G., et al. (2008). Dopamine and serotonin levels following prenatal viral infection in mouse – implications for psychiatric disorders such as schizophrenia and autism. Eur Neuropsychopharmacol, 18, 712–716.PubMedCrossRefGoogle Scholar
  94. Wright, P., Rakei, N., Rifkin, L., & Murray, R. (1995). Maternal influenza, obstetric complications, and schizophrenia. Am J Psychiatry, 152, 1714–1720.PubMedGoogle Scholar
  95. Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T., & Srivastava, D. (1999). A molecular pathway revealing a genetic basis for human cardiac and cranio-facial defects. Science, 283, 1158–1160.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry, Division of Neuroscience ResearchUniversity of Minnesota, Medical SchoolMinneapolisUSA
  2. 2.and Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations