Genomics, Proteomics, and the Nervous System pp 511-536

Part of the Advances in Neurobiology book series (NEUROBIOL, volume 2)

Proteomic Analysis of CNS Injury and Recovery

Chapter

Abstract

Despite the enormous medical and economic consequences of traumatic injury to the central nervous system (CNS), little is known about the proteins involved in the resulting pathology. Major advances in the identification of such proteins have been made in recent years through application of differential proteome analysis. Such an approach has revealed a number of novel proteins as potential regulators of the degenerative and regenerative processes that take place in the mammalian brain and spinal cord after a traumatic insult. Some of these proteins may serve as diagnostic and prognostic markers to assess the severity of tissue damage. Comparative proteome analysis of regeneration-competent vs. regeneration-deficient systems are likely to provide new insights into the cellular signals that could be targeted for therapeutic intervention to increase the repair capacity of the human CNS.

Keywords

Axotomy Cerebrospinal fluid Comparative proteomics Degeneration Differential proteomics Plasticity Regeneration Spinal cord injury Traumatic brain injury Vestibular compensation 

Abbreviations

2D PAGE

Two-dimensional polyacrylamide gel electrophoresis

CNS

Central nervous system

GFAP

Glial fibrillary acidic protein

SCI

Spinal cord injury

TBI

Traumatic brain injury

References

  1. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963–970.CrossRefGoogle Scholar
  2. Barnea, E., Sorkin, R., Ziv, T., Beer, I., & Admon, A. (2005). Evaluation of prefractionation ­methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics, 5, 3367–3375.PubMedCrossRefGoogle Scholar
  3. Brown, M. E., & Bridgman, P. C. (2004). Myosin function in nervous and sensory systems. Journal of Neurobiology, 58, 118–130.PubMedCrossRefGoogle Scholar
  4. Burgess, J. A., Lescuyer, P., Hainard, A., Burkhard, P. R., Turck, N., Michel, P., et al. (2006). Identification of brain cell death associated proteins in human post-mortem cerebrospinal fluid. Journal of Proteome Research, 5, 1674–1681.PubMedCrossRefGoogle Scholar
  5. Busch, S. A., & Silver, J. (2007). The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 17, 120–127.PubMedCrossRefGoogle Scholar
  6. Conti, A., Sanchez-Ruiz, Y., Bachi, A., Beretta, L., Grandi, E., Beltramo, M., et al. (2004). Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. Journal of Neurotrauma, 21, 854–863.PubMedCrossRefGoogle Scholar
  7. Darling, D. L., Yingling, J., & Wynshaw-Boris, A. (2005). Role of 14-3-3 proteins in eukaryotic signaling and development. Current Topics in Developmental Biology, 68, 281–315.PubMedCrossRefGoogle Scholar
  8. Davidsson, P., Paulson, L., Hesse, C., Blennow, K., & Nilsson, C. L. (2001). Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics, 1, 444–452.PubMedCrossRefGoogle Scholar
  9. Dieringer, N. (2003). Activity-related postlesional vestibular reorganization. Annals of the New York Academy of Sciences, 1004, 50–60.PubMedCrossRefGoogle Scholar
  10. Ding, Q., Wu, Z., Guo, Y., Zhao, C., Jia, Y., Kong, F., et al. (2006). Proteome analysis of up-­regulated proteins in the rat spinal cord induced by transection injury. Proteomics, 6, 505–518.PubMedCrossRefGoogle Scholar
  11. Doucet, A., & Overall, C. M. (2008). Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine, 29, 339–358.PubMedCrossRefGoogle Scholar
  12. Fischer, R. S., & Fowler, V. M. (2003). Tropomodulins: Life at the slow end. Trends in Cell Biology, 13, 593–601.PubMedCrossRefGoogle Scholar
  13. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G.-H., & Cowan, N. J. (1992). A cytoplasmic chaperonin that catalyzes β-actin folding. Cell, 69, 1043–1050.PubMedCrossRefGoogle Scholar
  14. Gorovits, R., Avidan, N., Avisar, N., Shaked, I., & Vardimon, L. (1997). Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proceedings of the National Academy of Sciences of the United States of America, 94, 7024–7029.PubMedCrossRefGoogle Scholar
  15. Graeber, M. B., Raivich, G., & Kreutzberg, G. W. (1989). Increase of transferrin receptors and iron uptake in regenerating motor neurons. Journal of Neuroscience Research, 23, 342–345.PubMedCrossRefGoogle Scholar
  16. Grosche, J., Hartig, W., & Reichenbach, A. (1995). Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neuroscience Letters, 185, 119–122.PubMedCrossRefGoogle Scholar
  17. Han, Z. G., Zhang, Q. H., Ye, M., Kan, L. X., Gu, B. W., He, K. L., et al. (1999). Molecular ­cloning of six novel Krüppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. Journal of Biological Chemistry, 274, 35741–35748.PubMedCrossRefGoogle Scholar
  18. Härtig, W., Grosche, J., Distler, C., Grimm, D., el-Hifnawi, E., & Reichenbach, A. (1995). Alterations of Müller (glial) cells in dystrophic retinae of RCS rats. Journal of Neurocytology, 24, 507–517.PubMedCrossRefGoogle Scholar
  19. Hattori, T., Takei, N., Mizuno, Y., Kato, K., & Kohsaka, S. (1995). Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neuroscience Research, 21, 191–198.PubMedCrossRefGoogle Scholar
  20. Hedgecock, E. M., Culotti, J. G., Thomson, J. N., & Perkins, L. A. (1985). Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Developmental Biology, 111, 158–170.PubMedCrossRefGoogle Scholar
  21. Hermeking, H., & Benzinger, A. (2006). 14-3-3 proteins in cell cycle regulation. Seminars in Cancer Biology, 16, 183–192.PubMedCrossRefGoogle Scholar
  22. Hinsch, K., & Zupanc, G. K. H. (2006). Isolation, cultivation, and differentiation of neural stem cells from adult fish brain. Journal of Neuroscience Methods, 158, 75–88.PubMedCrossRefGoogle Scholar
  23. Hinsch, K., & Zupanc, G. K. H. (2007). Generation and long-term persistence of new neurons in the adult zebrafish brain: A quantitative analysis. Neuroscience, 146, 679–696.PubMedCrossRefGoogle Scholar
  24. Hitchcock, P., Ochocinska, M., Sieh, A., & Otteson, D. (2004). Persistent and injury-induced neurogenesis in the vertebrate retina. Progress in Retinal and Eye Research, 23, 183–194.PubMedCrossRefGoogle Scholar
  25. Hitchcock, P. F., & Raymond, P. A. (1992). Retinal regeneration. Trends in Neurosciences, 15, 103–108.PubMedCrossRefGoogle Scholar
  26. Horie, H., Inagaki, Y., Sohma, Y., Nozawa, R., Okawa, K., Hasegawa, M., et al. (1999). Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. Journal of Neuroscience, 19, 9964–9974.PubMedGoogle Scholar
  27. Inagaki, Y., Sohma, Y., Horie, H., Nozawa, R., & Kadoya, T. (2000). Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. European Journal of Biochemistry, 267, 2955–2964.PubMedCrossRefGoogle Scholar
  28. Jenkins, L. W., Peters, G. W., Dixon, C. E., Zhang, X., Clark, R. S. B., Skinner, J. C., et al. (2002). Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. Journal of Neurotrauma, 19, 715–740.PubMedCrossRefGoogle Scholar
  29. Johansson, B. B. (2007). Regeneration and plasticity in the brain and spinal cord. Journal of Cerebral Blood Flow and Metabolism, 27, 1417–1430.PubMedCrossRefGoogle Scholar
  30. Kang, S. K., So, H. H., Moon, Y. S., & Kim, C. H. (2006). Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics, 6, 2797–2812.PubMedCrossRefGoogle Scholar
  31. Kanner, A. A., Marchi, N., Fazio, V., Mayberg, M. R., Koltz, M. T., Siomin, V., et al. (2003). Serum S100beta: A noninvasive marker of blood-brain barrier function and brain lesions. Cancer, 97, 2806–2813.PubMedCrossRefGoogle Scholar
  32. Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80, 183–201.CrossRefGoogle Scholar
  33. Kobeissy, F. H., Ottens, A. K., Zhang, Z., Liu, M. C., Denslow, N. D., Dave, J. R., et al. (2006). Novel differential neuroproteomics analysis of traumatic brain injury in rats. Molecular & Cellular Proteomics, 5, 1887–1898.CrossRefGoogle Scholar
  34. Kochanek, A. R., Kline, A. E., Gao, W.-M., Chadha, M., Lai, Y., Clark, R. S. B., et al. (2006). Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to ­immature rats using controlled cortical impact. Developmental Neuroscience, 28, 410–419.PubMedCrossRefGoogle Scholar
  35. Lacour, M. (2006). Restoration of vestibular function: Basic aspects and practical advances for rehabilitation. Current Medical Research and Opinion, 22, 1651–1659.PubMedCrossRefGoogle Scholar
  36. Lai, J. C. K., Murthy, C. R. K., Cooper, A. J. L., Hertz, E., & Hertz, L. (1989). Differential effects of ammonia and β-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochemical Research, 14, 377–389.PubMedCrossRefGoogle Scholar
  37. Lee, T. H., Lwu, S., Kim, J., & Pelletier, J. (2002). Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. Journal of Biological Chemistry, 277, 44826–44837.PubMedCrossRefGoogle Scholar
  38. Leung, C. L., Zheng, M., Prater, S. M., & Liem, R. K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. Journal of Cell Biology, 154, 691–697.PubMedCrossRefGoogle Scholar
  39. Lewis, G. P., Erickson, P. A., Guerin, C. J., Anderson, D. H., & Fisher, S. K. (1989). Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Experimental Eye Research, 49, 93–111.PubMedCrossRefGoogle Scholar
  40. Lewis, G. P., Guerin, C. J., Anderson, D. H., Matsumoto, B., & Fisher, S. K. (1994). Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. American Journal of Ophthalmology, 118, 368–376.PubMedGoogle Scholar
  41. Li, A., Lane, W. S., Johnson, L. V., Chader, G. J., & Tombran-Tink, J. (1995). Neuron-specific enolase: A neuronal survival factor in the retinal extracellular matrix? Journal of Neuroscience, 15, 385–393.PubMedGoogle Scholar
  42. Lifshitz, J., Sullivan, P. G., Hovda, D. A., Wieloch, T., & McIntosh, T. K. (2004). Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion, 4, 705–713.PubMedCrossRefGoogle Scholar
  43. Lilley, K. S., Razzaq, A., & Dupree, P. (2002). Two-dimensional gel electrophoresis: Recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 6, 46–50.PubMedCrossRefGoogle Scholar
  44. Lin, R. C. S., & Matesic, D. F. (1994). Immunohistochemical demonstration of neuron-specific enolase and microtubule-associated protein 2 in reactive astrocytes after injury in the adult forebrain. Neuroscience, 60, 11–16.PubMedCrossRefGoogle Scholar
  45. Lopez, M. F., Kristal, B. S., Chernokalskaya, E., Lazarev, A., Shestopalov, A. I., Bogdanova, A., et al. (2000). High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis, 21, 3427–3440.PubMedCrossRefGoogle Scholar
  46. López-Otín, C., & Overall, C. M. (2002). Protease degradomics: A new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3, 509–519.PubMedCrossRefGoogle Scholar
  47. Loy, D. N., Sroufe, A. E., Pelt, J. L., Burke, D. A., Cao, Q.-L., Talbott, J. F., et al. (2005). Serum biomarkers for experimental acute spinal cord injury: Rapid elevation of neuron-specific ­enolase and S-100β. Neurosurgery, 56, 391–397.PubMedCrossRefGoogle Scholar
  48. Lund, L. M., Machado, V. M., & McQuarrie, I. G. (2002). Increased β-actin and tubulin polymerization in regrowing axons: Relationship to the conditioning lesion effect. Experimental Neurology, 178, 306–312.PubMedCrossRefGoogle Scholar
  49. Lund, L. M., & McQuarrie, I. G. (1996). Axonal regrowth upregulates β-actin and Jun D mRNA expression. Journal of Neurobiology, 31, 476–486.PubMedCrossRefGoogle Scholar
  50. Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.PubMedCrossRefGoogle Scholar
  51. Michetti, F., & Gazzolo, D. (2002). S100B protein in biological fluids: A tool for perinatal ­medicine. Clinical Chemistry, 48, 2097–2104.PubMedGoogle Scholar
  52. Michetti, F., Massaro, A., & Murazio, M. (1979). The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neuroscience Letters, 11, 171–175.PubMedCrossRefGoogle Scholar
  53. Michetti, F., Massaro, A., Russo, G., & Rigon, G. (1980). The S-100 antigen in cerebrospinal fluid as a possible index of cell injury in the nervous system. Journal of the Neurological Sciences, 44, 259–263.PubMedCrossRefGoogle Scholar
  54. Monteoliva, L., & Albar, J. P. (2004). Differential proteomics: An overview of gel and non-gel based approaches. Briefings in Functional Genomics & Proteomics, 3, 220–239.CrossRefGoogle Scholar
  55. Nakamura, F., Kalb, R. G., & Strittmatter, S. M. (2000). Molecular basis of semaphorin-mediated axon guidance. Journal of Neurobiology, 44, 219–229.PubMedCrossRefGoogle Scholar
  56. Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255–262.PubMedCrossRefGoogle Scholar
  57. Nicholls, D. G., & Budd, S. L. (2000). Mitochondria and neuronal survival. Physiological Reviews, 80, 315–360.PubMedGoogle Scholar
  58. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., & Floyd, R. A. (1990). Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proceedings of the National Academy of Sciences of the United States of America, 87, 5144–5147.PubMedCrossRefGoogle Scholar
  59. Opii, W. O., Nukala, V. N., Sultana, R., Pandya, J. D., Day, K. M., Merchant, M. L., et al. (2007). Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. Journal of Neurotrauma, 24, 772–789.PubMedCrossRefGoogle Scholar
  60. Ott, R., Zupanc, G. K. H., & Horschke, I. (1997). Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neuroscience Letters, 221, 185–188.PubMedCrossRefGoogle Scholar
  61. Otteson, D. C., & Hitchcock, P. F. (2003). Stem cells in the teleost retina: Persistent neurogenesis and injury-induced regeneration. Vision Research, 43, 927–936.PubMedCrossRefGoogle Scholar
  62. Paramio, J. M., Casanova, M. L., Segrelles, C., Mittnacht, S., Lane, E. B., & Jorcano, J. L. (1999). Modulation of cell proliferation by cytokeratins K10 and K16. Molecular and Cellular Biology, 19, 3086–3094.PubMedGoogle Scholar
  63. Paterson, J. M., Short, D., Flatman, P. W., Seckl, J. R., Aitken, A., & Dutia, M. B. (2006). Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. Journal of Physiology, 575, 777–788.CrossRefGoogle Scholar
  64. Payne, B. R., & Lomber, S. G. (2002). Plasticity of the visual cortex after injury: What’s different about the young brain? The Neuroscientist, 8, 174–185.PubMedCrossRefGoogle Scholar
  65. Pekny, M., & Nilsson, M. (2005). Astrocyte activation and reactive gliosis. Glia, 50, 427–434.PubMedCrossRefGoogle Scholar
  66. Pineda, J. A., Wang, K. K. W., & Hayes, R. L. (2004). Biomarkers of proteolytic damage ­following traumatic brain injury. Brain Pathology, 14, 202–209.PubMedCrossRefGoogle Scholar
  67. Porter, G. W., Khuri, F. R., & Fu, H. (2006). Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Seminars in Cancer Biology, 16, 193–202.PubMedCrossRefGoogle Scholar
  68. Raivich, G., Graeber, M. B., Gehrmann, J., & Kreutzberg, G. W. (1991). Transferrin receptor expression and iron uptake in the injured and regenerating rat sciatic nerve. European Journal of Neuroscience, 3, 919–927.PubMedCrossRefGoogle Scholar
  69. Reaume, A. G., Elliott, J. L., Hoffman, E. K., Kowall, N. W., Ferrante, R. J., Siwek, D. R., et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genetics, 13, 43–47.PubMedCrossRefGoogle Scholar
  70. Rego, A. C., & Oliveira, C. R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research, 28, 1563–1574.PubMedCrossRefGoogle Scholar
  71. Romeo, M. J., Espina, V., Lowenthal, M., Espina, B. H., Petricoin, E. F., III, & Liotta, L. A. (2005). CSF proteome: A protein repository for potential biomarker identification. Expert Review of Proteomics, 2, 57–70.PubMedCrossRefGoogle Scholar
  72. Rowland, L. P., & Sciarra, D. (1989). Trauma. In L. P. Rowland (Ed.), Merritt’s textbook of neurology (8th ed., pp. 369–393). Philadelphia, London: Lea & Febiger.Google Scholar
  73. Santos, M., Paramio, J. M., Bravo, A., Ramirez, A., & Jorcano, J. L. (2002). The expression of keratin K10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. Journal of Biological Chemistry, 277, 19122–19130.PubMedCrossRefGoogle Scholar
  74. Segal, M. B. (1993). Extracellular and cerebrospinal fluids. Journal of Inherited Metabolic Disease, 16, 617–638.PubMedCrossRefGoogle Scholar
  75. Segal, M. B. (2000). The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cellular and Molecular Neurobiology, 20, 183–196.PubMedCrossRefGoogle Scholar
  76. Serna-Sanz, A., Rairdan, G., & Peck, S. C. (2007). Preparative denaturing isoelectric focusing for enhancing sensitivity of proteomic studies. Methods of Molecular Biology, 354, 99–104.Google Scholar
  77. Sickmann, A., Dormeyer, W., Wortelkamp, S., Woitalla, D., Kuhn, W., & Meyer, H. E. (2000). Identification of proteins from human cerebrospinal fluid, separated by two-dimensional ­polyacrylamide gel electrophoresis. Electrophoresis, 21, 2721–2728.PubMedCrossRefGoogle Scholar
  78. Sickmann, A., Dormeyer, W., Wortelkamp, S., Woitalla, D., Kuhn, W., & Meyer, H. E. (2002). Towards a high resolution separation of human cerebrospinal fluid. Journal of Chromatography B, 771, 167–196.CrossRefGoogle Scholar
  79. Siddiqui, S. S., & Culotti, J. G. (1991). Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. Journal of Neurogenetics, 7, 193–211.PubMedCrossRefGoogle Scholar
  80. Siman, R., McIntosh, T. K., Soltesz, K. M., Chen, Z., Neumar, R. W., & Roberts, V. L. (2004). Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiology of Disease, 16, 311–320.PubMedCrossRefGoogle Scholar
  81. Sirivatanauksorn, Y., Drury, R., Crnogorac-Jurcevic, T., Sirivatanauksorn, V., & Lemoine, N. R. (1999). Laser-assisted microdissection: Applications in molecular pathology. Journal of Pathology, 189, 150–154.PubMedCrossRefGoogle Scholar
  82. Slemmer, J. E., Weber, J. T., & De Zeeuw, C. I. (2004). Cell death, glial protein alterations and elevated S-100β release in cerebellar cell cultures following mechanically induced trauma. Neurobiology of Disease, 15, 563–572.PubMedCrossRefGoogle Scholar
  83. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543.PubMedCrossRefGoogle Scholar
  84. Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist, 11, 400–407.PubMedCrossRefGoogle Scholar
  85. Sommer, J. B., Gaul, C., Heckmann, J., Neundörfer, B., & Erbguth, F. J. (2002). Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. European Neurology, 47, 224–232.PubMedCrossRefGoogle Scholar
  86. Sullivan, P. G., Rabchevsky, A. G., Waldmeier, P. C., & Springer, J. E. (2005). Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? Journal of Neuroscience Research, 79, 231–239.PubMedCrossRefGoogle Scholar
  87. Suzuki, M., Yakushiji, N., Nakada, Y., Satoh, A., Ide, H., & Tamura, K. (2006). Limb regeneration in Xenopus laevis froglet. ScientificWorld Journal, 6(suppl 1), 26–37.PubMedCrossRefGoogle Scholar
  88. Takei, N., Kondo, J., Nagaike, K., Ohsawa, K., Kato, K., & Kohsaka, S. (1991). Neuronal survival factor from bovine brain is identical to neuron-specific enolase. Journal of Neurochemistry, 57, 1178–1184.PubMedCrossRefGoogle Scholar
  89. Tang, H.-Y., Ali-Khan, N., Echan, L. A., Levenkova, N., Rux, J. J., & Speicher, D. W. (2005). A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics, 5, 3329–3342.PubMedCrossRefGoogle Scholar
  90. Tetzlaff, W., Alexander, S. W., Miller, F. D., & Bisby, M. A. (1991). Response of facial and ­rubrospinal neurons to axotomy: Changes in mRNA expression for cytoskeletal proteins and GAP-43. Journal of Neuroscience, 11, 2528–2544.PubMedGoogle Scholar
  91. Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., et al. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics, 1, 377–396.PubMedCrossRefGoogle Scholar
  92. Tsai, M.-C., Shen, L.-F., Kuo, H.-S., Cheng, H., & Chak, K.-F. (2008). Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Molecular & Cellular Proteomics, 7, 1668–1687.CrossRefGoogle Scholar
  93. Tsuchiya, D., Hong, S., Matsumori, Y., Kayama, T., Swanson, R. A., Dillman, W. H., et al. (2003). Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ­ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery, 53, 1179–1188.PubMedCrossRefGoogle Scholar
  94. Vance, J. E., Campenot, R. B., & Vance, D. E. (2000). The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochimica et Biophysica Acta, 1486, 84–96.PubMedCrossRefGoogle Scholar
  95. Weisner, B., & Bernhardt, W. (1978). Protein fractions of lumbar, cisternal, and ventricular ­cerebrospinal fluid: Separate areas of reference. Journal of the Neurological Sciences, 37, 205–214.PubMedCrossRefGoogle Scholar
  96. Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M. L., & Sternlicht, H. (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358, 245–248.PubMedCrossRefGoogle Scholar
  97. Yang, Y., Dowling, J., Yu, Q.-C., Kouklis, P., Cleveland, D. W., & Fuchs, E. (1996). An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell, 86, 655–665.PubMedCrossRefGoogle Scholar
  98. Yin, M., Wheeler, M. D., Connor, H. D., Zhong, Z., Bunzendahl, H., Dikalova, A., et al. (2001). Cu/Zn-superoxide dismutase gene attenuates ischemia-reperfusion injury in the rat kidney. Journal of the American Society of Nephrology, 12, 2691–2700.PubMedGoogle Scholar
  99. Yoshida, M., Muneyuki, E., & Hisabori, T. (2001). ATP synthase: A marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology, 2, 669–677.PubMedCrossRefGoogle Scholar
  100. Yuan, X., & Desiderio, D. M. (2005). Proteomics analysis of prefractionated human lumbar ­cerebrospinal fluid. Proteomics, 5, 541–550.PubMedCrossRefGoogle Scholar
  101. Yuan, X., Russell, T., Wood, G., & Desiderio, D. M. (2002). Analysis of the human lumbar ­cerebrospinal fluid proteome. Electrophoresis, 23, 1185–1196.PubMedCrossRefGoogle Scholar
  102. Zappaterra, M. D., Lisgo, S. N., Lindsay, S., Gygi, S. P., Walsh, C. A., & Ballif, B. A. (2007). A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. Journal of Proteome Research, 6, 3537–3548.PubMedCrossRefGoogle Scholar
  103. Zupanc, G. K. H. (2006a). Neurogenesis and neuronal regeneration in the adult fish brain. Journal of Comparative Physiology A, 192, 649–670.CrossRefGoogle Scholar
  104. Zupanc, G. K. H. (2006b). Adult neurogenesis and neuronal regeneration in the teleost fish brain: Implications for the evolution of a primitive vertebrate trait. In T. H. Bullock & L. R. Rubenstein (Eds.), The evolution of nervous systems in non-mammalian vertebrates (pp. 485–520). Oxford: Academic.Google Scholar
  105. Zupanc, G. K. H. (2008a). Adult neurogenesis in teleost fish. In F. H. Gage, G. Kempermann, & H. Song (Eds.), Adult neurogenesis (pp. 571–592). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  106. Zupanc, G. K. H. (2008b). Adult neurogenesis and neuronal regeneration in the brain of teleost fish. Journal of Physiology (Paris), 102, 357–373.CrossRefGoogle Scholar
  107. Zupanc, G. K. H., Clint, S. C., Takimoto, N., Hughes, A. T. L., Wellbrock, U. M., & Meissner, D. (2003). Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish. Apteronotus leptorhynchus: A quantitative analysis. Brain Behavior and Evolution, 62, 31–42.CrossRefGoogle Scholar
  108. Zupanc, G. K. H., Hinsch, K., & Gage, F. H. (2005). Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. Journal of Comparative Neurology, 488, 290–319.PubMedCrossRefGoogle Scholar
  109. Zupanc, G. K. H., & Horschke, I. (1995). Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. Journal of Comparative Neurology, 353, 213–233.PubMedCrossRefGoogle Scholar
  110. Zupanc, G. K. H., Horschke, I., Ott, R., & Rascher, G. B. (1996). Postembryonic development of the cerebellum in gymnotiform fish. Journal of Comparative Neurology, 370, 443–464.PubMedCrossRefGoogle Scholar
  111. Zupanc, G. K. H., Kompass, K. S., Horschke, I., Ott, R., & Schwarz, H. (1998). Apoptosis after injuries in the cerebellum of adult teleost fish. Experimental Neurology, 152, 221–230.PubMedCrossRefGoogle Scholar
  112. Zupanc, G. K. H., & Ott, R. (1999). Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells produced. Experimental Neurology, 160, 78–87.PubMedCrossRefGoogle Scholar
  113. Zupanc, G. K. H., & Zupanc, M. M. (2006). New neurons for the injured brain: Mechanisms of neuronal regeneration in adult teleost fish. Regenerative Medicine, 1, 207–216.PubMedCrossRefGoogle Scholar
  114. Zupanc, M. M., Wellbrock, U. M., & Zupanc, G. K. H. (2006). Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics, 6, 577–696.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations