Polarization Behavior in Thin Film Ferroelectric Capacitors at the Nanoscale

  • A. GruvermanEmail author


A physical principle of most of ferroelectric-based devices is electrically induced polarization reversal, which on a microscopic level occurs via the nucleation and growth of a large number of domains. The dynamic characteristics of domain growth as well as static properties of domain structure to a large extent determine the ferroelectric device performance. Recent advances in the synthesis and fabrication of micro- and nanoscale ferroelectric structures [1–4] make it imperative to understand the domain switching behavior at this scale. A major limitation in acquiring this crucial information is the lack of experimental methods to characterize the domain kinetics with the nanometer length and nanosecond time resolution. The most effective approach to visualization of domain kinetics is based on linear coupling between ferroelectric and piezoelectric parameters, which on the experimental level can be detected either by X-ray scattering or by scanning force microscopy. High-resolution studies using time-resolved X-ray microdiffraction imaging [5–7] have demonstrated reproducible switching behavior of polarization from cycle to cycle and allowed direct measurements of domain wall velocity at high electric fields.


Domain Wall Domain Wall Motion Wall Velocity Domain Growth Piezoresponse Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation (Grant No. MRSEC DMR-0820521) and the Nebraska Center for Materials and Nanoscience at University of Nebraska-Lincoln. The author would like to thank Prof. T.W. Noh for his kind permission to use his data.


  1. 1.
    C.S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, C.P. de Araujo, Appl. Phys. Lett. 75, 3874 (1999)CrossRefGoogle Scholar
  2. 2.
    W.S. Yun, J.J. Urban, Q. Gu, H. Park, Nano Lett. 2, 447 (2002)CrossRefGoogle Scholar
  3. 3.
    Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83, 440 (2003)CrossRefGoogle Scholar
  4. 4.
    F.D. Morrison, L. Ramsay, J.F. Scott, J. Phys.:Condens. Matter 15, L527 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Grigoriev, D.-H. Do, D.M. Kim, C.-B. Eom, B. Adams, E. Dufresne, P.G. Evans, Phys. Rev. Lett. 96, 187601 (2006)CrossRefGoogle Scholar
  6. 6.
    D.H. Do, A. Grigoriev, D.M. Kim, C.-B. Eom, P.G. Evans, E.M. Dufresne, Integrated Ferroelectrics 101, 174 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Grigoriev, R. Sichel, H.-N. Lee, E.C. Landahl, B. Adams, E.M. Dufresne, P.G. Evans, Phys. Rev. Lett. 100, 027604 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Alexe, A. Gruverman (eds.), Nanoscale Characterization of Ferroelectric Materials:Scanning Probe Microscopy Approach, Springer, (2004[au1])Google Scholar
  9. 9.
    S. Jesse, A.P. Baddorf, S.V. Kalinin, Appl. Phys. Lett. 88, 062908 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Gruverman, B.J. Rodriguez, R.J. Nemanich, A.I. Kingon, J.S. Cross, M. Tsukada, Appl. Phys. Lett. 82, 3071 (2003)CrossRefGoogle Scholar
  11. 11.
    P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, S.V. Kalinin, Appl. Phys. Lett. 94, 042906 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Hong, E.L. Colla, E. Kim, D.V. Taylor, A.K. Tagantsev, P. Muralt, K. No, N. Setter, J. Appl. Phys. 86, 607 (1999)CrossRefGoogle Scholar
  13. 13.
    L. Tian, A. Vasudevarao, A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, V. Gopalan, J. Appl. Phys. 104, 074110 (2008)CrossRefGoogle Scholar
  14. 14.
    S.V. Kalinin, B.J. Rodriguez, S.-H. Kim, S.-K. Hong, A. Gruverman, E.A. Eliseev, Appl. Phys. Lett. 92, 152906 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Nath, Y.-H. Chu, N.A. Polomoff, R. Ramesh, B.D. Huey, Appl. Phys. Lett. 93, 072905 (2008)CrossRefGoogle Scholar
  16. 16.
    N.A. Polomoff, R. Nath, J.L. Bosse, B.D. Huey, J. Vac. Sci. Technol. B 27, 1011 (2009)CrossRefGoogle Scholar
  17. 17.
    C. Dehoff, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A. Gruverman, J.S. Cross, Rev. Sci. Instrum. 76, 023708 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Gruverman, D. Wu, J.F. Scott, Phys. Rev. Lett. 100, 097601 (2008)CrossRefGoogle Scholar
  19. 19.
    D.J. Kim, J.Y. Jo, T.H. Kim, S.M. Yang, B. Chen, Y.S. Kim, T.W. Noh, Appl. Phys. Lett. 91, 132903 (2007)CrossRefGoogle Scholar
  20. 20.
    S.M. Yang, J.Y. Jo, D.J. Kim, H. Sung, T.W. Noh, H.N. Lee, J.-G. Yoon, T.K. Song, Appl. Phys. Lett. 92, 252901 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, J.S. Cross, Appl. Phys. Lett. 87 082902 (2005)CrossRefGoogle Scholar
  22. 22.
    T. Hase, T. Shiosaki, Jpn. J. Appl. Phys. 30, 2159 (1991)CrossRefGoogle Scholar
  23. 23.
    Y. Ishibashi, Y. Takagi, J. Phys. Soc. Jap. 31, 506 (1971)CrossRefGoogle Scholar
  24. 24.
    O. Lohse et al., J. Appl. Phys. 89, 2332 (2001)CrossRefGoogle Scholar
  25. 25.
    X.F. Du, I.W. Chen, Appl. Phys. Lett. 72, 1923 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Tagantsev et al., Phys. Rev. B 66, 214109 (2002)CrossRefGoogle Scholar
  27. 27.
    J.Y. Jo, H.S. Han, J.-G. Yoon, T.K. Song, S.-H. Kim, T.W. Noh, Phys. Rev. Lett. 99, 267602 (2007)CrossRefGoogle Scholar
  28. 28.
    W. Li, M. Alexe, Appl. Phys. Lett. 91, 262903 (2007)CrossRefGoogle Scholar
  29. 29.
    Y.W. So, D.J. Kim, T.W. Noh, J.-G. Yoon, T.K. Song, Appl. Phys. Lett. 86, 092905 (2005)CrossRefGoogle Scholar
  30. 30.
    J.Y. Jo, S.M. Yang, T.H. Kim, H.N. Lee, J.-G. Yoon, S. Park, Y. Jo, M.H. Jung, T.W. Noh, Phys. Rev. Lett. 102, 045701 (2009)CrossRefGoogle Scholar
  31. 31.
    N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)CrossRefGoogle Scholar
  32. 32.
    N.A. Pertsev, G. Arlt, A.G. Zembilgotov, Microelectron. Eng. 29, 135 (1995)CrossRefGoogle Scholar
  33. 33.
    J.S. Speck, A. Seifert, W. Pompe, R. Ramesh, J. Appl. Phys. 76, 477 (1994)CrossRefGoogle Scholar
  34. 34.
    W. Pompe, X. Gong, Z. Suo, J.S. Speck, J. Appl. Phys. 74, 6012 (1993)CrossRefGoogle Scholar
  35. 35.
    A. Gruverman, J.S. Cross, W.S. Oates, Appl. Phys. Lett. 93, 242902 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Su, C. Landis, J. Mech. Phys. Solids, 55, 280 (2007)CrossRefGoogle Scholar
  37. 37.
    J.F. Scott, A. Gruverman, D. Wu, I. Vrejoiu, M. Alexe, J. Phys.:Condens. Matter 20, 425222 (2008)CrossRefGoogle Scholar
  38. 38.
    W. Kleemann, J. Dec, S.A. Prosandeev, T. Braun, P.A. Thomas, Ferroelectrics 334, 3 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of NebraskaLincolnUSA

Personalised recommendations