New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy

  • Volker RoseEmail author
  • John W. Freeland
  • Stephen K. Streiffer


The achievement of nanometer spatial resolution with direct elemental selectivity would have a tremendous impact on our ability to probe and understand complex phenomena occurring at the nanoscale. The combination of synchrotron-based X-ray spectroscopy with the high spatial resolution of scanning tunneling microscopy (STM) has the potential to help attain this goal. In this chapter we show how synchrotron X-ray-enhanced scanning tunneling microscopy (SXSTM) has evolved from the very early days of photo-assisted STM to become a promising spectroscopy and imaging technique in nanoscience and nanotechnology. The basic principles of SXSTM are discussed accompanied by a presentation of recent experiments.


Scanning Tunneling Microscopy Total Electron Yield Tunneling Regime Scanning Tunneling Microscopy Measurement NiFe Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their gratitude to several people who contributed to this project. Special thanks go to Kenneth Gray for the generous allocation of experimental equipment, which made this work possible in the first place. We thank Vitali Metlushko for the growth and patterning of the studied samples. Curt Preissner is acknowledged for his engineering support and Matthias Bode for several fruitful discussions. This work has been supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    M.C. Roco, W.S. Bainbridge (eds.), Nanotechnology:Social Implications – Maximizing Benefits for Humanity (National Science Foundation Report, Arlington, VA, 2001)Google Scholar
  2. 2.
    R. Wiesendanger, M. Bode, R. Pascal, W. Allers, U.D. Schwarz, J. Vac. Sci. Technol. A 14, 1161 (1996)CrossRefGoogle Scholar
  3. 3.
    T.A. Jung, F.J. Himpsel, R.R. Schlittler, J.K. Gimzewski, Chemical information from scanning probe microscopy and spectroscopy, in:Scanning Probe Microscopy:Analytical Methods,  Chap. 2, R. Wiesendanger (ed.) (Springer, Berlin, 1998), p. 11Google Scholar
  4. 4..
    J. Viernow, D.Y. Petrovykh, A. Kirakosian, J.-L. Lin, F.K. Men, M. Henzler, F.J. Himpsel, Phys. Rev. B 59, 10356 (1999)CrossRefGoogle Scholar
  5. 5.
    B. Kaulich, M. Kiskinova, in Synchrotron Radiation X-ray Microscopy Based on Zone Plate Optics, Lecture Notes in Physics, vol. 588 (Springer, Berlin, 2002)Google Scholar
  6. 6.
    H.C. Kang, H. Yan, R.P. Winarski, M.V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A.T. Macrander, G.B. Stephenson, Appl. Phys. Lett. 92, 221114 (2008)CrossRefGoogle Scholar
  7. 7.
    M.O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979)CrossRefGoogle Scholar
  8. 8.
    B.L. Henke, J.A. Smith, D.T. Atwood, J. Appl. Phys. 48, 1852 (1977)CrossRefGoogle Scholar
  9. 9.
    B.L. Henke, J. Liesegang, S.D. Smith, Phys. Rev. B 19, 3004 (1979)CrossRefGoogle Scholar
  10. 10.
    J.L. Erskine, E.A. Stern, Phys. Rev. B 12, 5016 (1975)CrossRefGoogle Scholar
  11. 11.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987)CrossRefGoogle Scholar
  12. 12.
    J. Stohr, Y. Wu, in New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Sources, ed. by A.S. Schlachter, F.J. Wuilleumier (Kluwer Academic Publishers, Netherlands, 1994), p. 211Google Scholar
  13. 13.
    J. Stohr, J. Electron Spectrosc. Rel. Phenom. 75, 253 (1995)CrossRefGoogle Scholar
  14. 14.
    O. Eriksson, B. Johansson, R.C. Albers, A.M. Boring, M.S.S. Brooks, Phys. Rev. B 42, 2707 (1990)CrossRefGoogle Scholar
  15. 15.
    B.T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992)CrossRefGoogle Scholar
  16. 16.
    P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70, 694 (1993)CrossRefGoogle Scholar
  17. 17.
    G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)CrossRefGoogle Scholar
  18. 18.
    G. Binnig, H. Rohrer, Helv. Phys. Acta 55, 726 (1982)Google Scholar
  19. 19.
    R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy:Methods and Applications (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  20. 20.
    L.A. DuBridge, Phys. Rev. 43, 727 (1933)CrossRefGoogle Scholar
  21. 21.
    G.F.A. van de Walle, H. van Kempen, P. Wyder, P. Davidsson, Appl. Phys. Lett. 50, 22 (1987)CrossRefGoogle Scholar
  22. 22.
    J.K. Gimzewski, R. Berndt, R.R. Schlittler, Ultramicroscopy 42–44, 366 (1992)CrossRefGoogle Scholar
  23. 23.
    S. Grafström, J. Appl Phys. 91, 1717 (2002)CrossRefGoogle Scholar
  24. 24.
    O. Dhez, M. Rodrigues, F. Comin, R. Felici, J. Chevrier, AIP Conf. Proc. 879, 1391 (2007)CrossRefGoogle Scholar
  25. 25.
    T. Scheler, M. Rodrigues, T.W. Cornelius, C. Mocuta, A. Malachias, R. Magalhães-Paniago, F. Comin, J. Chevrier, T.H. Metzger, Appl. Phys. Lett. 94, 023109 (2009)CrossRefGoogle Scholar
  26. 26.
    K. Tsuji, K. Hirokawa, Jpn. J. Appl. Phys. 34, L1506 (1995)CrossRefGoogle Scholar
  27. 27.
    K. Tsuji, K. Hirokawa, Rev. Sci. Instrum. 67, 3573 (1996)CrossRefGoogle Scholar
  28. 28.
    K. Tsuji, K. Wagatsuma, Jpn. J. Appl. Phys. 36, 1264 (1997)CrossRefGoogle Scholar
  29. 29.
    K. Tsuji, K. Hirokawa, Surf. Interface Anal. 24, 286 (1996)CrossRefGoogle Scholar
  30. 30.
    K. Tsuji, Y. Hasegawa, K. Wagatsuma, T. Sakurai, Jpn. J. Appl. Phys. 37, L1271 (1998)CrossRefGoogle Scholar
  31. 31.
    Y. Hasegawa, K. Tsuji, K. Nakayama, K. Wagatsuma, T. Sakurai, J. Vac. Sci. Technol. B 18, 2676 (2000)CrossRefGoogle Scholar
  32. 32.
    K. Tsuji, K. Wagatsuma, K. Sugiyama, K. Hiraga, Y. Waseda, Surf. Interface Anal. 27, 132 (1999)CrossRefGoogle Scholar
  33. 33.
    T. Matsushima, T. Okuda, T. Eguchi, M. Ono, A. Harasawa, T. Wakita, A. Kataoka,M. Hamada, A. Kamoshida, Y. Hasegawa, T. Kinoshita, Rev. Sci. Instrum. 75, 2149 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Okuda, T. Eguchi, T. Matsushima, M. Hamada, X.-D. Ma, A. Kataoka, A. Harasawa,T. Kinoshita, Y. Hasewgawa, J. Electr. Spectr. Relat. Phenom. 144–147, 1157 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Saito, J. Maruyama, K. Manabe, K. Kitamoto, K. Takahashi, K. Takami, M. Yabashi,Y. Tanaka, D. Miwa, M. Ishii, Y. Takagi, M. Akai-Kasaya, S. Shin, T. Ishikawa, Y. Kuwahara, M. Aono, J. Synchrotron Rad. 13, 216 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Saito, J. Maruyama, K. Manabe, K. Kitamoto, K. Takahashi, K. Takami, S. Hirotsune,Y. Takagi, Y. Tanaka, D. Miwa, M. Yabashi, M. Ishii, M. Akai-Kasaya, S. Shin, T. Ishikawa, Y. Kuwahara, M. Aono, Jpn. J. Appl. Phys. 45, 1913 (2006)CrossRefGoogle Scholar
  37. 37.
    K. Akiyama, T. Eguchi, T. An, Y. Hasegawa, T. Okuda, A. Harasawa, T. Kinoshita, Rev. Sci. Instrum. 76, 083711 (2005)CrossRefGoogle Scholar
  38. 38.
    T. Eguchi, T. Okuda, T. Matsushima, A. Kataoka, A. Harasawa, K. Akiyama, T. Kinoshita,Y. Hasegawa, M. Kawamori, Y. Haruyama, S. Matsui, Appl. Phys. Lett. 89, 243119 (2006)CrossRefGoogle Scholar
  39. 39.
    T. Okuda, T. Eguchi, K. Akiyama, A. Harasawa, T. Kinoshita, Y. Hasegawa, M. Kawamori, Y. Haruyama, S. Matsui, Phys. Rev. Lett. 102, 105503 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985)CrossRefGoogle Scholar
  41. 41.
    J.P. Ibe, P.P. Bey Jr., S.L. Brandow, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton, J. Vac. Sci. Technol. A 8, 3570 (1990)CrossRefGoogle Scholar
  42. 42.
    B. Zhang, E. Wang, Electrochimica Acta 39, 103 (1994)CrossRefGoogle Scholar
  43. 43.
    A.A. Gewirth, B.K. Niece, Chem. Rev. 97, 1129 (1997)CrossRefGoogle Scholar
  44. 44.
    K. Itaya, Prog. Surf. Sci. 58, 121 (1998)CrossRefGoogle Scholar
  45. 45.
    A. Saito, K. Takahashi, Y. Takagi, K. Nakamatsu, K. Hanai, Y. Tanaka, D. Miwa, M. Akai-kasaya, S. Shin, S. Matsui, T. Ishikawa, Y. Kuwahara, M. Aono, Surf. Sci. 601, 5294 (2007)CrossRefGoogle Scholar
  46. 46.
    V. Rose, J.W. Freeland, K.E. Gray, S.K. Streiffer, Appl. Phys. Lett. 92, 193510 (2008)CrossRefGoogle Scholar
  47. 47.
    J.W. Freeland, J.C. Lang, G. Srajer, R. Winarski, D. Shu, D.M. Mills, Rev. Sci. Instrum. 73, 1408 (2002)CrossRefGoogle Scholar
  48. 48.
    V. Rose, J.W. Freeland, AIP Conf. Proc. 1234, 445 (2010)Google Scholar
  49. 49.
    E.Z. Kurmaev, A.L. Ankudinov, J.J. Rehr, L.D. Finkelstein, P.F. Karimov, A. Moewes,J. Electron Spectrosc. Relat. Phenom. 148, 1 (2005)CrossRefGoogle Scholar
  50. 50.
    C.-Y. Chiu, Y.-L. Chan, Y.J. Hsu, D.H. Wie, Appl. Phys. Lett. 92, 103101 (2008)CrossRefGoogle Scholar
  51. 51.
    F. Träger (ed.), Springer Handbook of Lasers and Optics,  Chap. 18 (Springer, New York, 1998) p. 1153Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Volker Rose
    • 1
    Email author
  • John W. Freeland
  • Stephen K. Streiffer
  1. 1.Advanced Photon Source Argonne National LaboratoryArgonneUSA

Personalised recommendations