Novel Visualizations and Interactions for Social Networks Exploration

Chapter

Abstract

In the last decade, the popularity of social networking applications has dramatically increased. Social networks are collection of persons or organizations connected by relations. Members of Facebook listed as friends or persons connected by family ties in genealogical trees are examples of social networks. Today’s web surfers are often part of many online social networks: they communicate in groups or forums on topics of interests, exchange emails with their friends and colleagues, express their ideas on public blogs, share videos on YouTube, exchange and comment photos on Flickr, participate to the edition of the online encyclopedia Wikipedia or contribute to daily news by collaborating to Wikinews or Agoravox.

References

  1. 1.
    J. Moreno, “Who shall survive?”, Nervous and Mental Disease Publishing Company, Washington, DC, 1934.Google Scholar
  2. 2.
    L. Freeman, “Visualizing social networks”, Journal of Social Structure, 1, 2000, 1.MathSciNetGoogle Scholar
  3. 3.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Graph drawing: Algorithms for the visualization of graphs”, Prentice Hall PTR, NJ, 1998.Google Scholar
  4. 4.
    I. Herman, G. Melancon, and S. Marshall, “Graph visualization and navigation in information visualization: A survey”, IEEE Transactions on Visualization and Computer Graphics, 6(1), 2000, 24–43.CrossRefGoogle Scholar
  5. 5.
    H. Purchase, “Which aesthetic has the greatest effect on human understanding?”, Proceedings of Graph Drawing, 97, 1997, 248–261.CrossRefGoogle Scholar
  6. 6.
    C. Ware, H. Purchase, L. Colpoys, and M. McGill, “Cognitive measurements of graph aesthetics”, Journal of Information Visualization, 1(2), 2002, 248–261.Google Scholar
  7. 7.
    S. K. Card, J. D. Mackinlay, and B. Shneiderman, “Readings in information visualization: Using vision to think”, Morgan Kaufmann Publishers, San Francisco, 1999.Google Scholar
  8. 8.
    O. Frank, “Sampling and estimation in large social networks”, Social networks, 1, 1978, 91–101.CrossRefMathSciNetGoogle Scholar
  9. 9.
    D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks”, Nature, 393, 1998, 440–442.CrossRefGoogle Scholar
  10. 10.
    Y. Koren, L. Carmel, and D. Harel, “Drawing huge graphs by algebraic multigrid optimization”, Multiscale Modeling and Simulation, 1(4), 2003, 645–673.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Perer and B. Shneiderman, “Balancing systematic and flexible exploration of social networks”, IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006, 693–700.CrossRefGoogle Scholar
  12. 12.
    A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review”, ACM Computing Surveys, 31(3), 1999, 264–323.CrossRefGoogle Scholar
  13. 13.
    J. Abello, F. van Ham, and N. Krishnan, “Ask-graphview: A large scale graph visualization system”, IEEE Transactions on Visualization and Computer Graphics journal, 12(5), 2006, 669–676.CrossRefGoogle Scholar
  14. 14.
    I. Herman, G. Melancon, M. M. de Ruiter, and M. Delest, “Latour: A tree visualisation system”, Proceedings of the Graph Drawing symposium (GD’ 99), LNCS, 1731, 1999, 392–399.Google Scholar
  15. 15.
    B. Lee, C. S. Parr, C. Plaisant, B. B. Bederson, V. D. Veksler, W. D. Gray, and C. Kotfila, “TreePlus: interactive exploration of networks with enhanced tree layouts”, IEEE Transactions on Visualization and Computer Graphics, Special Issue on Visual Analytics, 12(6), 2006, 1414–1426.Google Scholar
  16. 16.
    G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees: Animated 3D visualizations of hierarchical information”, In Proceedings of the ACM CHI’91 Conference on Human Factors in Computing Systems, ACM Press, New York, 1991, 189–194.Google Scholar
  17. 17.
    D. Auber, “Tulip: A huge graph visualisation framework”. In P. Mutzel and M. Jünger (Eds), Graph drawing software, mathematics and visualization, Springer, Verlag, 2003, 105–126.Google Scholar
  18. 18.
    A. G. Sutcliffe and U. Pater, “3D or not 3D: is it nobler to the mind?”, In British Human Computer Interaction Conference, Cambridge University Press, Cambridge, 1996, 79–94.Google Scholar
  19. 19.
    A. Cockburn and B. McKenzie, “An evaluation of cone trees”, People and Computers XV (Proceedings of the 2000 British Computer Society Conference on Human Computer Interaction., 2000.Google Scholar
  20. 20.
    J. Lamping and R. Rao, “The hyperbolic browser: A focus + context technique for visualizing large hierarchies”, Journal of Visual Languages and Computing, 7(1), 1996, 33–35.CrossRefGoogle Scholar
  21. 21.
    T. Munzner, “H3: Laying out large directed graphs in 3d hyperbolic space”, Symposium on Information Visualization (InfoVis’ 97), 1997, 2–10.Google Scholar
  22. 22.
    B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling approach”, ACM Transactions on Graphics 11(1), 1992, 92–99.MATHCrossRefGoogle Scholar
  23. 23.
    J. -D. Fekete, D. Wang, N. Dang, and C. Plaisant, “Overlaying graph links on treemaps”, IEEE Symposium on Information Visualization Conference Compendium (Demonstration), October 2003.Google Scholar
  24. 24.
    B. Lee, M. Czerwinski, G. Robertson, and B. B. Bederson, “Understanding eight years of infovis conferences using paperlens”, In INFOVIS’04: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS’04), Washington, DC, USA, 2004, 216.Google Scholar
  25. 25.
    H. Kang, C. Plaisant, B. Lee, and B. B. Bederson, “Netlens: Iterative exploration of content-actor network data”, Proceedings of IEEE VAST, 2006, 91–98.Google Scholar
  26. 26.
    J. Bertin, “Semiology of graphics”, University of Wisconsin Press, Madison, 1983.Google Scholar
  27. 27.
    C. Mueller, B. Martin, and A. Lumsdaine, “A comparison of vertex ordering algorithms for large graph visualization”, In Asia-Pacific Symposium on Visualization (APVIS’07), February 2007.Google Scholar
  28. 28.
    N. Henry and J. -D. Fekete, “Evaluating visual table data understanding”, In BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV’06), ACM Press, Venice, Italy, 2006.Google Scholar
  29. 29.
    G. Caraux and S. Pinloche, “Permutmatrix: A graphical environment to arrange gene expression profiles in optimal linear order”, Bioinformatics, 21, 2005, 1280–1281.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    M. S. T. Carpendale, “Framework for elastic presentation space”, Ph. D. thesis, Simon Fraser University, Canada, 1999.Google Scholar
  32. 32.
    R. Rao and S. K. Card, “The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information”, In CHI’94: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, 1994, 318–322.Google Scholar
  33. 33.
    N. Elmqvist, N. Henry, Y. Riche, and J. -D. Fekete, “Melange: space-folding for multi-focus interaction”, In CHI’08: Proceedings of the SIGCHI conference on Human Factors in computing systems, New York, 2008.Google Scholar
  34. 34.
    F. van Ham, “Using multilevel call matrices in large software projects”, In Proceedings of the 2003 IEEE Symposium on Information Visualization, IEEE Press, Seattle, 2003, 227–232.Google Scholar
  35. 35.
    N. Elmqvist, T. -N. Do, H. Goodell, N. Henry, and J. -D. Fekete, “Navigating wikipedia with the zoomable adjacency matrix explorer”, Proceedings of Pacific Visualization Conference, 2008.Google Scholar
  36. 36.
    M. Ghoniem, J. -D. Fekete, and P. Castagliola, “On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis”, Information Visualization, 4(2), 2005, 114–135.CrossRefGoogle Scholar
  37. 37.
    N. Henry and J. -D. Fekete, “MatrixExplorer: A dual-representation system to explore social networks”, IEEE Transactions on Visualization and Computer Graphics (Infovis’06 proceedings), 12(5), 2006, 677–684.Google Scholar
  38. 38.
    N. Henry and J. -D. Fekete, “Matlink: Enhanced matrix visualization for analyzing social networks”, In Lecture Notes in Computer Science (Proceedings of the 13th IFIP TC13 International Conference on Human-Computer Interaction, INTERACT’07), 4663, 2007, 288–302.Google Scholar
  39. 39.
    N. Henry, J. -D. Fekete, and M. McGuffin, “Nodetrix: Hybrid representation for analyzing social networks”, TVCG (Proceedings of IEEE Information Visualization conference), 13(6), 2007, 1302–1309.Google Scholar
  40. 40.
    T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. -D. Fekete, “Topology-aware navigation in large networks”, In Proceedings of the 27th international Conference on Human Factors in Computing Systems, Boston, 2009, 2319–2328.Google Scholar
  41. 41.
    N. Henry, A. Bezerianos, and J. -D. Fekete, “Improving the readability of clustered social networks by node duplication”, IEEE Transactions on Visualization and Computer Graphics (Proceedings of Visualization/Information Visualization 2008), 14, 2008, 6.Google Scholar
  42. 42.
    J. -D. Fekete, J. J. van Wijk, J. T. Stasko, and C. North, “The value of information visualization”. In: A. Kerren, J. T. Stasko, J. -D. Fekete, C. North (Eds), Information Visualization – Human-Centered Issues and Perspectives, LNCS, 4950, Springer, Verlag, 2008, 1–18.Google Scholar
  43. 43.
    N. Henry, “Exploring large social networks with matrix-based representations”, Ph.D. Thesis, Cotutelle Université Paris-Sud (France) and University of Sydney (Australia), July 2008.Google Scholar
  44. 44.
    N. Henry, H. Goodell, N. Elmqvist, and J. -D. Fekete, “20 years of 4 HCI conferences: a visual exploration”, In International Journal of Human Computer Interaction – Reflections on Human-Computer Interaction, A Special Issue in Honor of Ben Shneiderman’s 60th Birthday, 23(3), 2007, 239–285.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations