Advertisement

Liver Zonation

  • Sabine Colnot
  • Christine Perret
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 5)

Abstract

Maintenance of liver homeostasis relies on the metabolic ­function of this organ. To carry out these metabolic functions at a maximal possible efficiency, hepatocytes are both quiescent and highly specialized. They specialize as a function based on their position along the porto-central axis of the liver lobule that determines their fate as either “periportal” (PP), or “perivenous” (PV) hepatocytes. This zonation of function mainly affects ammonia detoxification, glucose/energy metabolism, and xenobiotic metabolism. Over the last 30 years, since the initial discovery of liver zonation, the mechanisms by which this zonation is established and maintained have been widely investigated. The Wnt/β(beta)-catenin developmental pathway has been recently shown to play a key role in this functional heterogeneity of mouse hepatocytes. It is activated in perivenous hepatocytes, partly due to the absence, in the perivenous area, of adenomatous polyposis coli (APC), a tumor suppressor gene product. APC is a negative regulator of Wnt signaling, also described as the “zonation-keeper” of the liver lobule. The Wnt pathway induces the PV genetic program and represses the PP genetic program. The ras/mapk/erk pathway acts in a reciprocal manner to counterbalance Wnt signaling and favors a PP genetic program. More recently, a cross-talk between the transcription factor Hnf4α(alpha) and Wnt signaling has been proposed as a potential mechanism of liver zonation.

Keywords

Genetic Program Adenomatous Polyposis Coli Liver Lobule Constitutive Androstane Receptor Hepatocyte Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We warmly thank Drs Jan Hengstler (IFADo, Dortmund, Germany), Stefan Hoehme and Dirk Drasdo (INRIA, France) for providing their three-dimensional reconstruction of the liver lobule (Fig. 2.1a) [61]. This work was supported by INSERM, CNRS and the “Ligue Nationale Contre le Cancer” (LNCC, Comité de Paris, équipe Labellisée 2008), the ANR-07-PHYSIO and the CANCERSYS European network.

References

  1. 1.
    Katz N, Teutsch HF, Jungermann K, Sasse D. Heterogeneous ­reciprocal localization of fructose-1, 6-bisphosphatase and of ­glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett. 1977;83(2):272–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Jungermann K, Kietzmann T. Zonation of parenchymal and ­nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Braeuning A, Ittrich C, Kohle C, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273(22):5051–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Berkowitz CM, Shen CS, Bilir BM, Guibert E, Gumucio JJ. Different hepatocytes express the cholesterol 7 alpha-hydroxylase gene during its circadian modulation in vivo. Hepatology. 1995;21(6):1658–67.PubMedGoogle Scholar
  5. 5.
    Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. Prog Histochem Cytochem. 2007;41(4):201–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Gebhardt R, Lindros K, Lamers WH, Moorman AF. Hepatocellular heterogeneity in ammonia metabolism: demonstration of limited colocalization of carbamoylphosphate synthetase and glutamine synthetase. Eur J Cell Biol. 1991;56(2):464–7.PubMedGoogle Scholar
  7. 7.
    Haussinger D, Lamers WH, Moorman AF. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme. 1992;46(1–3):72–93.PubMedGoogle Scholar
  8. 8.
    Notenboom RG, Moorman AF, Lamers WH. Developmental appearance of ammonia-metabolizing enzymes in prenatal murine liver. Microsc Res Tech. 1997;39(5):413–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Bralet MP, Branchereau S, Brechot C, Ferry N. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol. 1994;144(5):896–905.PubMedGoogle Scholar
  10. 10.
    Tygstrup N, Winkler K, Mellemgaard K, Andreassen M. Determination of the hepatic arterial blood flow and oxygen supply in man by clamping the hepatic artery during surgery. J Clin Invest. 1962;41:447–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Cadoret A, Ovejero C, Terris B, et al. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002;21(54):8293–301.PubMedCrossRefGoogle Scholar
  12. 12.
    Benhamouche S, Decaens T, Godard C, et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell. 2006;10(6):759–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology. 2006;43(3):407–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43(4):817–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10(4):276–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Nusse R, Fuerer C, Ching W, et al. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol. 2008;73:59–66.Google Scholar
  18. 18.
    de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998;95(15):8847–51.CrossRefGoogle Scholar
  19. 19.
    Audard V, Grimber G, Elie C, et al. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol. 2007;212(3):345–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA. 2004;101(49):17216–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008;4(5):647–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Braeuning A, Sanna R, Huelsken J, Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos. 2009;37(5):1138–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Chafey P, Finzi L, Boisgard R, et al. Proteomic analysis of ­beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics. 2009;9(15):3889–900.PubMedCrossRefGoogle Scholar
  25. 25.
    Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137(1):62–79.PubMedCrossRefGoogle Scholar
  26. 26.
    McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134(12):2207–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signaling positively regulates liver specification. Nature. 2006;442(7103):688–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Decaens T, Godard C, de Reynies A, et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology. 2008;47(1):247–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Tan X, Yuan Y, Zeng G, et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008;47(5):1667–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Apte U, Zeng G, Thompson MD, et al. Beta-catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1578–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Zeng G, Awan F, Otruba W, et al. Wnt’er in liver: expression of Wnt and frizzled genes in mouse. Hepatology. 2007;45(1):195–204.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee VM, Cameron RG, Archer MC. Zonal location of compensatory hepatocyte proliferation following chemically induced hepatotoxicity in rats and humans. Toxicol Pathol. 1998;26(5):621–7.PubMedGoogle Scholar
  33. 33.
    Sell S. The hepatocyte: heterogeneity and plasticity of liver cells. Int J Biochem Cell Biol. 2003;35(3):267–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Andreu P, Colnot S, Godard C, et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development. 2005;132(6):1443–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18(12):1385–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47(1):288–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Hu M, Kurobe M, Jeong YJ, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Cadoret A, Ovejero C, Saadi-Kheddouci S, et al. Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res. 2001;61(8):3245–9.PubMedGoogle Scholar
  39. 39.
    Harada N, Miyoshi H, Murai N, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res. 2002;62(7):1971–7.PubMedGoogle Scholar
  40. 40.
    Cavard C, Terris B, Grimber G, et al. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with beta-catenin mutations. Oncogene. 2006;25(4):599–608.PubMedCrossRefGoogle Scholar
  41. 41.
    Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446(7136):676–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Sekine S, Gutierrez PJ, Lan BY, Feng S, Hebrok M. Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology. 2007;45(2):361–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Reed KR, Athineos D, Meniel VS, et al. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proc Natl Acad Sci USA. 2008;105(48):18919–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131(5):1561–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Vlad A, Rohrs S, Klein-Hitpass L, Muller O. The first five years of the Wnt targetome. Cell Signal. 2008;20(5):795–802.PubMedCrossRefGoogle Scholar
  46. 46.
    Braeuning A, Menzel M, Kleinschnitz EM, et al. Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by beta-catenin signaling in mouse hepatocytes. FEBS J. 2007;274(18):4766–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res. 2004;64(1):48–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Battle MA, Konopka G, Parviz F, et al. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA. 2006;103(22):8419–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21(4):1393–403.PubMedCrossRefGoogle Scholar
  50. 50.
    Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha). HNF4alpha regulates ­ornithine transcarbamylase in vivo. J Biol Chem. 2002;277(28):25257–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Odom DT, Zizlsperger N, Gordon DB, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303(5662):1378–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Parviz F, Matullo C, Garrison WD, et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 2003;34(3):292–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Lindros KO, Oinonen T, Issakainen J, Nagy P, Thorgeirsson SS. Zonal distribution of transcripts of four hepatic transcription factors in the mature rat liver. Cell Biol Toxicol. 1997;13(4–5):257–62.PubMedCrossRefGoogle Scholar
  54. 54.
    Colletti M, Cicchini C, Conigliaro A, et al. Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology. 2009;137(2):660–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Stanulovic VS, Kyrmizi I, Kruithof-de Julio M, et al. Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology. 2007;45(2):433–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Hatzis P, van der Flier LG, van Driel MA, et al. Genome-wide ­pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol. 2008;28(8):2732–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Braeuning A, Ittrich C, Kohle C, Buchmann A, Schwarz M. Zonal gene expression in mouse liver resembles expression patterns of Ha-ras and beta-catenin mutated hepatomas. Drug Metab Dispos. 2007;35(4):503–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee JS, Chu IS, Mikaelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet. 2004;36(12):1306–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations ­associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120(7):1763–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Zucman-Rossi J, Benhamouche S, Godard C, et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene. 2007;26(5):774–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Hoehme et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration Proc Natl Acad Sci USA. 2010;107(23):10371–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Endocrinology, Metabolism and Cancer, INSERM U567, Institut CochinUniversité Paris DescartesParisFrance

Personalised recommendations