Skip to main content

Protein Aggregation: Opposing Effects of Chaperones and Crowding

  • Chapter
  • First Online:
Folding for the Synapse

Abstract

Each molecule of every protein runs the risk that at any time between its synthesis and its degradation, it will bind to one or more identical molecules to form a nonfunctional aggregate. Some protein aggregates are toxic to cells, including neurones, and are thus factors in the development of neurodegenerative and other human diseases. The incidence of such diseases is increasing, together with human longevity and obesity. The probability of protein aggregation is increased by the crowded state of most intracellular compartments, but is reduced by the activities of a diverse range of proteins acting as molecular chaperones. These chaperones use a variety of mechanisms to combat aggregation during the folding of newly synthesized protein chains, their transport into and across membranes, and their assembly into functional oligomers. This article discusses some of the key concepts and basic evidence underlying these conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akey CW, Luger K (2003) Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13: 6–14

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Barral JM, Broadley SA, Schaffar G, Hartl FU (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15: 17–29

    Article  PubMed  CAS  Google Scholar 

  • Bousset L, Redeker V, Decottignies P, Dubois S, Marechal PL, Melki R (2004) Structural characterisation of th fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. Biochemistry 43: 5022–5032

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366

    Article  PubMed  CAS  Google Scholar 

  • Caspar DLD, Klug A (1962) Physical principles in the construction of regular virsuses. Cold Spring Harbor Symp Quant Biol 27:1–24

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty K, Georgeacauld F, Hayer-Hartl M, Hartl FU (2010) Roles of molecular chaperones in protein folding. In: Ramirez-Alvarado M, Kelly JW, Dobson CM (eds) Protein Misfolding Diseases, Wiley pp. 42–72

    Google Scholar 

  • Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424: 805–808

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid and disease. Annu Rev Biochem 75: 333–366

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313: 1604–1610

    Article  PubMed  CAS  Google Scholar 

  • Cowen LE, Lindquist S (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309: 2185–2189

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 13: 138–163

    Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu A, Mogk A, Bukau B. (1999) Trigger factors and DnaK cooperate in the folding of newly synthesized proteins. Nature 400: 693–696

    Article  PubMed  CAS  Google Scholar 

  • Dinner AR et al (2000) Understanding protein Folding via Free-energy Surfaces from theory and experiment. Trends Biochem Sc. 25 331–339

    Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM, Ellis RJ, Fersht AR (eds) (2001) Protein Misfolding and Disease. Phil Trans R Soc B: 356: 129–131

    Google Scholar 

  • Ellis RJ (1987) Proteins as molecular chaperones. Nature 328: 378–379

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2000) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26: 597–604

    Article  Google Scholar 

  • Ellis RJ (2003) The importance of the Anfinsen cage. Current Biol 13: R881–R883

    Article  CAS  Google Scholar 

  • Ellis RJ (2004) From chloroplasts to chaperones: how one thing led to another. Photosyn Res 80: 333–343

    Article  CAS  Google Scholar 

  • Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395–401

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387: 485–497

    Article  PubMed  CAS  Google Scholar 

  • Farr GW, Fenton WA, Rospert S, Horwich AR. Folding with and without encapsulation by cis and trans-only GroEL-GroES complexes (2001) EMBO J 22: 3220–3230

    Article  Google Scholar 

  • Freedman RB (2008) Eukaryotic protein disulfide-isomerases and their potential in the production of disulfide-bonded protein products: what we need to know but do not! In: Buchner J, Moroder L (eds) Oxidative folding of peptides and proteins, Royal Society of Chemistry pp. 121–157

    Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603–647

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS (1992) The Machinery of Life. Springer Varlaa New York Inc.

    Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hatters DM, Minton AP, Howlett GJ (2002) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem 277: 7824–7830

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos GC, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Pockley AG (eds) (2005) Molecular chaperones and cell signalling. Cambridge University Press, New York

    Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23: 115–145

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Develop Biol 11: 53–60

    Article  CAS  Google Scholar 

  • Idicula-Thomas S, Balaji PV (2007) Protein aggregation: a perspective from amyloid and inclusion-body formation. Current Science 92: 758–767

    CAS  Google Scholar 

  • Kota J, Ljungdahl PO (2005) Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 168: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Kusmierczyk AR, Hochstrasser M (2008) Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis, Biol Chem 389: 1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275: 416–420

    Article  PubMed  CAS  Google Scholar 

  • Lazardis T, Karplus M (1997) ‘New view’ of protein folding reconciled with the old through multiple unfolding simulations. Science 278: 1928–1931

    Article  Google Scholar 

  • London J, Skrzynia C, Goldberg M (1975) Renaturation of Escherichia coli tryptophanase in aqueous urea solutions. Eur J Biochem 47: 409–415

    Article  Google Scholar 

  • Luhrs T, Ritter C, Adrian M., Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riel R (2005) 3D structure of Alzheimer’s amyloid-ß(1–42) fibrils. Proc Nat Acad Sci 102: 17342–17347

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Hartl FU (1997) The effect of macromolecular crowding on chaperonin-mediated protein folding. Proc Nat Acad Sci 94: 1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling E (2006) The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 272: 21865–21871

    Google Scholar 

  • Minton AP (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55: 119–140

    Article  PubMed  CAS  Google Scholar 

  • Minton AP, (1992) Confinement as a determinant of macromolecular structure. Biophys J 63: 1090–1100

    Article  PubMed  CAS  Google Scholar 

  • Musgrove JE, Ellis RJ (1986) The rubisco large subunit binding protein. Phil Trans. Roy Soc Lond B 313: 419–428

    Article  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435: 773–778

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99: 16742–16753

    Article  PubMed  CAS  Google Scholar 

  • Philpott A, Krude T, Lasker RA (2000) Nuclear chaperones. Semin Cell Dev Biol 11: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Puig A, Gilbert HF (1994) Protein disulfide isomerase exhibits chaperone and antichaperone activities in the oxidative folding of lysozyme. J Biol Chem 269: 7764–7771

    PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Raviol H, Sadlish H, Rodrigvez F, Mayer MP, Bukau B (2006) Chaperone network in the yeast cytosol=Hsp 110 is revealed as an Hsp 70 nucleotide exchange Factor. EMBO J. 2510–2518

    Google Scholar 

  • Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16: 118–126

    Article  PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B, (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16: 1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor inactivation. Molecular Cell 15: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Chakraborty K, Muller BK, Astola N, Tang YC, Lamb DC, Hayer-Hartl M, Hartl FU (2008) Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TriC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nature Cell Biology 8: 1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, ­Hayer-Hartl M (2006) Structural features of the GroEL-GroES nanocage required for rapid folding of encapsulated protein. Cell 125: 903–914

    Article  PubMed  CAS  Google Scholar 

  • Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755–765

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Cooper EM, Bower JI, Fink AL (2002) Accelerated α-synuclein fibrillation in crowded mileu. FEBS Lett 515: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn RD, Hofmann D, Merz F, Nikolay R, Rauch T, Graf C, Deuerling E (2006) A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J Biol Chem 281: 2847–2857

    Article  PubMed  CAS  Google Scholar 

  • Wright CF, Teichmann SA, Clarke J, Dodson CM (2005) Specificity in aggregation and the evolution of modular proteins. Nature 438: 878–881

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler, P.(1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nature Revs Cell Biol 5:781–790

    Article  CAS  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical and potential physiological consequences. Annu Rev Biophys 37: 375–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ellis, R.J. (2011). Protein Aggregation: Opposing Effects of Chaperones and Crowding. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_2

Download citation

Publish with us

Policies and ethics