Complexity and High-End Computing in Biology and Medicine

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)


Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.


High-performance computing Computational biology and medicine  Complexity 



The author warmly acknowledges financial support from the Irish Research Council for Science, Engineering and Technology (Embark Initiative, immune modelling), Science Foundation Ireland (Research Frontiers Programme 07/RFP/CMSR724, epigenetic modelling), and Dublin City University (Career Start Award, socio-epidemic modelling). The author also wishes to thank both the SFI/HEA Irish Centre for High-End Computing, and the Centre for Scientific Computing & Complex Systems Modelling, for the provision of computational facilities and support.


  1. 1.
    Barski A et al. (2007). Cell 129(4):823–837.PubMedCrossRefGoogle Scholar
  2. 2.
    Cantu-Paz E (1995). IlliGAL report 95007, University of Illinois (IL).Google Scholar
  3. 3.
    Chamberlain BL et al. (2007). Int J High Perform Comput Appl 21(3):291–312.CrossRefGoogle Scholar
  4. 4.
    Chandra R et al. (2000). Parallel Programming in OpenMP. Morgan Kaufmann, San Francisco.Google Scholar
  5. 5.
    Chen Y et al. (2008). Phys Rev Lett 101(5):1–4.Google Scholar
  6. 6.
    Claude B et al. (2009). Proceedings of the International Conference on Computational Aspects of Social Networks, IEEE Computer Society.Google Scholar
  7. 7.
    Crutchfield JP (1994). Physica D 75(1–3):11–54.CrossRefGoogle Scholar
  8. 8.
    D’Agostino N et al. (2005). BMC Bioinformatics 2005, 6(Suppl 4):S9.PubMedCrossRefGoogle Scholar
  9. 9.
    Duhamel C, Perrin D (2008). Technical report RR-08-07, LIMOS.Google Scholar
  10. 10.
    Egmont-Petersen M et al. (2002). Pattern Recognit 35(10):2279–2301.CrossRefGoogle Scholar
  11. 11.
    Gentleman R et al. (2005). Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York.CrossRefGoogle Scholar
  12. 12.
    Goertzel B (1992). J Soc Evol Syst 15(1):7–53.CrossRefGoogle Scholar
  13. 13.
    Goldenfeld N, Kadanoff LP (1999). Science 284:87–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Gropp W et al. (1999). Using MPI: Portable Parallel Programming With the Message-Passing Interface, 2nd edition. MIT Press, Cambridge.Google Scholar
  15. 15.
    Gropp W et al. (1999). Using MPI-2: Advanced Features of the Message Passing Interface. MIT Press, Cambridge.Google Scholar
  16. 16.
    Hecquet D et al. (2007). Comput Biol Med 37(5):691–699.PubMedCrossRefGoogle Scholar
  17. 17.
    Hill J et al. (2008). BMC Bioinformatics 9:558.PubMedCrossRefGoogle Scholar
  18. 18.
    Jackson WC, Norgard JD (2008). J Optim Theory Appl 136(3):431–443.CrossRefGoogle Scholar
  19. 19.
    Kitchen CA, Guest MF (2009). Adv Comput 75:1–111.CrossRefGoogle Scholar
  20. 20.
    Koch CM et al. (2007). Genome Res 17(6):691–707.PubMedCrossRefGoogle Scholar
  21. 21.
    Kretzschmar M, Wiessing LG (1998). AIDS 12(7):801–811.PubMedCrossRefGoogle Scholar
  22. 22.
    Kubota T (2008). Environ Health Prev Med 13(1):3–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Ma L et al. (2008). BMC Bioinformatics 9:315.PubMedCrossRefGoogle Scholar
  24. 24.
    Meuer HW (2008). Informatik-Spektrum 31(3):203–222.CrossRefGoogle Scholar
  25. 25.
    Miyamoto K, Ushijima T (2005). Jpn J Clin Oncol 35(6):293–301.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagaraj SH et al. (2007). Brief Bioinform 8(1):6–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Perrin D et al. (2008). ERCIM News 72:46.Google Scholar
  28. 28.
    Perrin D et al. (2009). In silico Biology – Making the most of parallel computing. In Handbook of Research on Biocomputation and Biomedical Informatics (A. Lazakidou, editor). Information Science Reference.Google Scholar
  29. 29.
    Ruskin HJ et al. (2002). Physica A 311:213–220.CrossRefGoogle Scholar
  30. 30.
    Ruskin HJ, Burns J (2006). Physica A 365(2):549–555.CrossRefGoogle Scholar
  31. 31.
    Sato M, Sumiya K (2006). Proceedings of The Fourth International Conference on Creating, Connecting and Collaborating through Computing (C5 ’06). IEEE Computer Society.Google Scholar
  32. 32.
    Vasilescu C et al. (2007). J Crit Care 22(4):342.CrossRefGoogle Scholar
  33. 33.
    Williams RW, Herrup K (1988). Annu Rev Neurosci 11:423–453.PubMedCrossRefGoogle Scholar
  34. 34.
    Yue P, Moult J (2006). J Mol Biol 356(5):1263–1274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Scientific Computing & Complex Systems ModellingDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations