Estimation, Modeling, and Simulation of Patterned Growth in Extreme Environments

  • B. Strader
  • K. E. SchubertEmail author
  • M. Quintana
  • E. Gomez
  • J. Curnutt
  • P. Boston
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)


In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet’s modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.


Cellular Automaton Dust Devil Cellular Automaton Model Dead Center General Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Special issue on banded vegetation. Catena vol. 37 (1999)Google Scholar
  2. 2.
  3. 3.
    Bassler, B.L.: Small talk: cell-to-cell communication in bacteria. Cell 109, 421–424 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    Boston, P.: Extraterrestrial caves. In: Encyclopedia of cave and karst science, pp. 355–358. Fitzroy-Dearborn Publishers, Ltd., London, UK (2004)Google Scholar
  5. 5.
    Boston, P., Hose, L., Northup, D., Spilde, M.: The microbial communities of sulfur caves: A newly appreciated geologically driven system on Earth and potential model for Mars. In: R. Harmon (ed.) Karst geomorphology, hydrology, & geochemistry, pp. 331–344. Geological Society of America (2006)Google Scholar
  6. 6.
    Boston, P., Ivanov, M., McKay, C.: On the possibility of chemosynthetic ecosystems in subsurface habitats on mars. Icarus 95, 300–308 (1992)PubMedCrossRefGoogle Scholar
  7. 7.
    Boston, P., Spilde, M., Northup, D., Melim, L., Soroka, D., Kleina, L., Lavoie, K., Hose, L., Mallory, L., Dahm, C., Crossey, L., Schelble, R.: Cave biosignature suites: Microbes, minerals and mars. Astrobiology Journal 1(1), 25–55 (2001)CrossRefGoogle Scholar
  8. 8.
    CA, K.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)CrossRefGoogle Scholar
  9. 9.
    Cady, S.: Formation and preservation of bona fide microfossils. In: Signs of life: A report based on the april 2000 workshop on life detection techniques, committee on the origins and evolution of life, pp. 149–155. National Research Council, The National Academies, Washington, DC (2001)Google Scholar
  10. 10.
    Conrad, L.: Spaceward bound project. (2009)
  11. 11.
    Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218, 1–11 (2002)PubMedCrossRefGoogle Scholar
  12. 12.
    Cushing, G., Titus, T., Wynne, J., Christensen, P.: Themis observes possible cave skylights on mars. Geophysical Research Letters 34(L17201) (2007)Google Scholar
  13. 13.
    Gardner, M.: The fantastic combinations of john conway’s new solitaire game ‘life’. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  14. 14.
    von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertifcation. Physical Review Letters 87(19):(198101-14) (2001)Google Scholar
  15. 15.
    HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H., de Kroon, H.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–62 (2001)CrossRefGoogle Scholar
  16. 16.
    Hoare, D., Couzin, I., Godin, J.G., Krause, J.: Context-dependent group size choice in fish. Animal Behavior 67, 155–164 (2004)CrossRefGoogle Scholar
  17. 17.
    Hose, L., Palmer, A., Palmer, M., Northup, D., Boston, P., Duchene, H.: Microbiology and geochemistry in a hydrogen sulphide-rich karst environment. Chemical Geology 169, 399–423 (2000)CrossRefGoogle Scholar
  18. 18.
    Jacob, E.B., Aharonov, Y., Shapira, Y.: Bacteria harnessing complexity. Biofilms 1, 239–263 (2004)CrossRefGoogle Scholar
  19. 19.
    Krause, J., Tegeder, R.: The mechanism of aggregation behavior in fish shoals: individuals minimize approach time to neighbours. Animal Behavior 48, 353–359 (1994)CrossRefGoogle Scholar
  20. 20.
    Levine, H., Jacob, E.B.: Physical schemata underlying biological pattern formation-examples, issues and strategies. Journal of Physical Biology 1, 14–22 (2004)CrossRefGoogle Scholar
  21. 21.
    Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., Zarmi, Y.: Vegetation patterns along a rainfall gradient. Chaos, Solutions and Fractals 19, 367–376 (2004)CrossRefGoogle Scholar
  22. 22.
    Nealson, K., Conrad, P.: Life: past, present and future. Philosophical Transactions of the Royal Society of London Series B-Biological Science 354(1392), 1923–1939 (1999)CrossRefGoogle Scholar
  23. 23.
    Pitcher, T., Misund, O., Fernö, A., Totland, B., Melle, V.: Adaptive behaviour of herring schools in the norwegian sea as revealed by high-resolution sonar. ICES Journal of Marine Science 53, 449–452 (1996)CrossRefGoogle Scholar
  24. 24.
    Savill, N.J., Hogeweg, P.: Competition and dispersal in predator-prey waves. Theoretical Population Biology 56, 243–263 (1999)PubMedCrossRefGoogle Scholar
  25. 25.
    Seckbach, J.: Algae and cyanobacteria in extreme environments. In: Cellular origin, life in extreme habitats and astrobiology, p. 814. Springer, Dordrecht, Netherlands (2007)Google Scholar
  26. 26.
    Shi, J.: Partial differential equations and mathematical biology. (2008)
  27. 27.
    Strader, B.: Simulating spatial partial differential equations with cellular automata. M. cs., CSU San Bernardino, San Bernardino, CA, USA (2008)Google Scholar
  28. 28.
    Strader, B., Schubert, K., Gomez, E., Curnutt, J., Boston, P.: Simulating spatial partial differential equations with cellular automata. In: H.R. Arabnia, M.Q. Yang (eds.) Proceedings of the 2009 International Conference on Bioinformatics and Computational Biology, vol. 2, pp. 503–509 (2009)Google Scholar
  29. 29.
    Thiéry, J., d’Herbès, J., Valentin, C.: A model simulating the genesis of banded vegetation patterns in niger. The Journal of Ecology 83, 497–507 (1995)Google Scholar
  30. 30.
    Wolfram, S.: Twenty problems in the theory of cellular automata. Physica Scripta T9, 170–183 (1985)CrossRefGoogle Scholar
  31. 31.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. Strader
  • K. E. Schubert
    • 1
    Email author
  • M. Quintana
  • E. Gomez
  • J. Curnutt
  • P. Boston
  1. 1.California State UniversitySan BernardinoUSA

Personalised recommendations