Software Tools and Algorithms for Biological Systems

Volume 696 of the series Advances in Experimental Medicine and Biology pp 123-134


Comparative Advantages of Novel Algorithms Using MSR Threshold and MSR Difference Threshold for Biclustering Gene Expression Data

  • Shyama DasAffiliated withDepartment of Computer Science, Cochin University of Science and Technology Email author 
  • , Sumam Mary Idicula

* Final gross prices may vary according to local VAT.

Get Access


The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes in the submatrix show highly correlated activities across all conditions in the submatrix. A measure called mean squared residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within the submatrix. MSR difference is the incremental increase in MSR when a gene or condition is added to the bicluster. In this chapter, three biclustering algorithms using MSR threshold (MSRT) and MSR difference threshold (MSRDT) are experimented and compared. All these methods use seeds generated from K-Means clustering algorithm. Then these seeds are enlarged by adding more genes and conditions. The first algorithm makes use of MSRT alone. Both the second and third algorithms make use of MSRT and the newly introduced concept of MSRDT. Highly coherent biclusters are obtained using this concept. In the third algorithm, a different method is used to calculate the MSRDT. The results obtained on bench mark datasets prove that these algorithms are better than many of the metaheuristic algorithms.