A Technical Platform for Generating Reproducible Expression Data from Streptomyces coelicolor Batch Cultivations

  • F. Battke
  • A. Herbig
  • A. Wentzel
  • Ø. M. Jakobsen
  • M. Bonin
  • D. A. Hodgson
  • W. Wohlleben
  • T. E. Ellingsen
  • STREAM Consortium
  • K. Nieselt
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)

Abstract

Streptomyces coelicolor, the model species of the genus Streptomyces, presents a complex life cycle of successive morphological and biochemical changes involving the formation of substrate and aerial mycelium, sporulation and the production of antibiotics. The switch from primary to secondary metabolism can be triggered by nutrient starvation and is of particular interest as some of the secondary metabolites produced by related Streptomycetes are commercially relevant. To understand these events on a molecular basis, a reliable technical platform encompassing reproducible fermentation as well as generation of coherent transcriptomic data is required. Here, we investigate the technical basis of a previous study as reported by Nieselt et al. (BMC Genomics 11:10, 2010) in more detail, based on the same samples and focusing on the validation of the custom-designed microarray as well as on the reproducibility of the data generated from biological replicates. We show that the protocols developed result in highly coherent transcriptomic measurements. Furthermore, we use the data to predict chromosomal gene clusters, extending previously known clusters as well as predicting interesting new clusters with consistent functional annotations.

Keywords

Batch fermentation Chromosomal gene clusters Microarray design Streptomyces coelicolor 

References

  1. 1.
    Bentley, S.D., et al.: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885), 141–147 (2002)PubMedCrossRefGoogle Scholar
  2. 2.
    Bolstad, B.M., et al.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    Dietzsch, J., et al.: Mayday–a microarray data analysis workbench. Bioinformatics 22(8), 1010–1012 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    Finn, R.D., et al.: The Pfam protein families database. Nucleic Acids Research 36(suppl_1), D281–288 (2008)PubMedGoogle Scholar
  5. 5.
    Gautier, L., et al.: affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3), 307–315 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    Heyer, L.J., et al.: Exploring expression data: identification and analysis of coexpressed genes. Genome Research 9(11), 1106–1115 (1999)PubMedCrossRefGoogle Scholar
  7. 7.
    Liu, W., et al.: Analysis of bacillus subtilis tagab and tagdef expression during phosphate starvation identifies a repressor role for phop-p. Journal of Bacteriology 180(3), 753–758 (1998)PubMedGoogle Scholar
  8. 8.
    Nieselt, K., et al.: The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2006)Google Scholar
  10. 10.
    Rodríguez-García, A., et al.: Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7(14), 2410–2429 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    Sanger Institute: Protein classification scheme. http://www.sanger.ac.uk/Projects/S_coelicolor/classwise.html
  12. 12.
    Sola-Landa, A., et al.: Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Molecular Microbiology 56(5), 1373–1385 (2005)PubMedCrossRefGoogle Scholar
  13. 13.
    Sola-Landa, A., et al.: Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Research 36(4), 1358–1368 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    UniProt Consortium: The universal protein resource (uniprot). Nucleic Acids Research 36(Database issue), 190–195 (2008)CrossRefGoogle Scholar
  15. 15.
    Voelker, F., et al.: Nitrogen source governs the patterns of growth and pristinamycin production in ‘streptomyces pristinaespiralis’. Microbiology 147(Pt 9), 2447–2459 (2001)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Battke
  • A. Herbig
  • A. Wentzel
  • Ø. M. Jakobsen
  • M. Bonin
  • D. A. Hodgson
  • W. Wohlleben
  • T. E. Ellingsen
  • STREAM Consortium
  • K. Nieselt
    • 1
  1. 1.Faculty of Science, Center for Bioinformatics TübingenUniversity of TübingenTübingenGermany

Personalised recommendations