Post-Translational Modification of Cellular Proteins by Ubiquitin and Ubiquitin-Like Molecules: Role in Cellular Senescence and Aging

  • Johannes GrillariEmail author
  • Regina Grillari-Voglauer
  • Pidder Jansen-Dürr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 694)


Ubiquitination of endogenous proteins is one of the key regulatory steps that guides protein degradation through regulation of proteasome activity. During the last years evidence has accumulated that proteasome activity is decreased during the aging process in various model systems and that these changes might be causally related to aging and age-associated diseases. Since in most instances ubiquitination is the primary event in target selection, the system of ubiquitination and deubiquitination might be of similar importance. Furthermore, ubiquitination and proteasomal degradation are not completely congruent, since ubiquitination confers also functions different from targeting proteins for degradation.

Depending on mono- and polyubiquitination and on how ubiquitin chains are linked together, post-translational modifications of cellular proteins by covalent attachment of ubiquitin and ubiquitin-like proteins are involved in transcriptional regulation, receptor internalization, DNA repair, stabilization of protein complexes and autophagy. Here, we summarize the current knowledge regarding the ubiquitinome and the underlying ubiquitin ligases and deubiquitinating enzymes in replicative senescence, tissue aging as well as in segmental progeroid syndromes and discuss potential causes and consequences for aging.


Proliferate Cell Nuclear Antigen Cellular Senescence Fanconi Anemia Senescent Cell Premature Senescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carrard G, Bulteau AL, Petropoulos I et al. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 2002; 34(11):1461–1474.PubMedCrossRefGoogle Scholar
  2. 2.
    Martinez-Vicente M, Sovak G, Cuervo AM. Protein degradation and aging. Exp Gerontol 2005; 40(8–9):622–633.PubMedCrossRefGoogle Scholar
  3. 3.
    Farout L, Lamare M, Clavel S et al. Differential expression of ubiquitin and proteasome-dependent pathway components in rat tissues. Comp Biochem Physiol B Biochem Mol Biol 2003; 134(2):297–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Bregegere F, Milner Y, Friguet B. The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways: a handle for skin care? Ageing Res Rev 2006; 5(1):60–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Ciechanover A, Schwartz AL. Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology 2002; 35(1):3–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Layfield R, Lowe J, Bedford L. The ubiquitin-proteasome system and neurodegenerative disorders. Essays Biochem 2005; 41:157–171.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang TT, D’Andrea AD. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7(5):323–334.PubMedCrossRefGoogle Scholar
  8. 8.
    Sigismund S, Polo S, Di Fiore PP. Signaling through monoubiquitination. Curr Top Microbiol Immunol 2004; 286:149–185.PubMedGoogle Scholar
  9. 9.
    Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33(3):275–286.PubMedCrossRefGoogle Scholar
  10. 10.
    Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO 2005; 24(19):3353–3359.CrossRefGoogle Scholar
  11. 11.
    Kirkin V, McEwan DG, Novak I et al. A role for ubiquitin in selective autophagy. Mol Cell 2009; 34(3):259–269.PubMedCrossRefGoogle Scholar
  12. 12.
    Ben-Saadon R, Fajerman I, Ziv T et al. The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J Biol Chem 2004; 279(40):41414–41421.PubMedCrossRefGoogle Scholar
  13. 13.
    Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695(1–3):55–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82(2):373–428.PubMedGoogle Scholar
  15. 15.
    Fang S, Weissman AM. A field guide to ubiquitylation. Cell Mol Life Sci 2004; 61(13):1546–1561.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoppe T. Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all. Trends Biochem Sci 2005; 30(4):183–187.PubMedCrossRefGoogle Scholar
  17. 17.
    Staub O, Rotin D. Role of ubiquitylation in cellular membrane transport. Physiol Rev 2006; 86(2):669–707.PubMedCrossRefGoogle Scholar
  18. 18.
    Thrower JS, Hoffman L, Rechsteiner M et al. Recognition of the polyubiquitin proteolytic signal. EMBO J 2000; 19(1):94–102.PubMedCrossRefGoogle Scholar
  19. 19.
    Novak P, Kruppa GH, Young MM et al. A top-down method for the determination of residue-specific solvent accessibility in proteins. J Mass Spectrom 2004; 39(3):322–328.PubMedCrossRefGoogle Scholar
  20. 20.
    Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003; 19:141–172.PubMedCrossRefGoogle Scholar
  21. 21.
    Altmann K, Westermann B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16(11):5410–5417.PubMedCrossRefGoogle Scholar
  22. 22.
    Spence J, Gali RR, Dittmar G et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 2000; 102(1):67–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7(8):758–765.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu CJ, Conze DB, Li T et al. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation (corrected). Nat Cell Biol 2006; 8(4):398–406.PubMedCrossRefGoogle Scholar
  25. 25.
    Krappmann D, Scheidereit C. A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep 2005; 6(4):321–326.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson ES, Ma PC, Ota IM et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270(29):17442–17456.PubMedCrossRefGoogle Scholar
  27. 27.
    Mastrandrea LD, You J, Niles EG et al. E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J Biol Chem 1999; 274(38):27299–27306.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang M, Pickart CM. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J 2005; 24(24):4324–4333.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang M, Cheng D, Peng J et al. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J 2006; 25(8):1710–1719.PubMedCrossRefGoogle Scholar
  30. 30.
    Alberti S, Demand J, Esser C et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 2002; 277(48):45920–45927.PubMedCrossRefGoogle Scholar
  31. 31.
    Sahara N, Murayama M, Mizoroki T et al. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 2005; 94(5):1254–1263.PubMedCrossRefGoogle Scholar
  32. 32.
    Shang F, Deng G, Liu Q et al. Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J Biol Chem 2005; 280(21):20365–20374.PubMedCrossRefGoogle Scholar
  33. 33.
    Haglund K, Sigismund S, Polo S et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5(5):461–466.PubMedCrossRefGoogle Scholar
  34. 34.
    D’Andrea A, Pellman D. Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 1998; 33(5):337–352.PubMedCrossRefGoogle Scholar
  35. 35.
    Bergink S, Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009; 458(7237):461–467.PubMedCrossRefGoogle Scholar
  36. 36.
    Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 2008; 9(9):859–864.PubMedCrossRefGoogle Scholar
  37. 37.
    Xirodimas DP. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem Soc Trans 2008; 36(Pt 5):802–806.PubMedCrossRefGoogle Scholar
  38. 38.
    Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8(7):559–568.PubMedCrossRefGoogle Scholar
  39. 39.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25:585–621.CrossRefGoogle Scholar
  40. 40.
    Campisi J. Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev 2005; 126(1):51–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34(11):1401–1414.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang C, Jurk D, Maddick M et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 2009; 8(3):311–323.PubMedCrossRefGoogle Scholar
  43. 43.
    Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92(20):9363–9367.PubMedCrossRefGoogle Scholar
  44. 44.
    Herbig U, Ferreira M, Condel L et al. Cellular senescence in aging primates. Science 2006; 311(5765):1257.PubMedCrossRefGoogle Scholar
  45. 45.
    Krizhanovsky V, Yon M, Dickins RA et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134(4):657–667.PubMedCrossRefGoogle Scholar
  46. 46.
    Koppelstaetter C, Schratzberger G, Perco P et al. Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 2008; 7(4):491–497.PubMedCrossRefGoogle Scholar
  47. 47.
    Melk A. Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 2003; 18(12):2474–2478.PubMedCrossRefGoogle Scholar
  48. 48.
    Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: Its relevance in ageing and cardiovascular disease. Exp Gerontol 2005; 40(8-9):634–642.PubMedCrossRefGoogle Scholar
  49. 49.
    Minamino T, Komuro I. Role of telomeres in vascular senescence. Front Biosci 2008; 13:2971–2979.PubMedCrossRefGoogle Scholar
  50. 50.
    Olovnikov AM. (Principle of marginotomy in template synthesis of polynucleotides). Dokl Akad Nauk SSSR 1971; 201(6):1496–1499.PubMedGoogle Scholar
  51. 51.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426(6963):194–198. Epub 2003, 2005.PubMedCrossRefGoogle Scholar
  52. 52.
    Jansen-Durr P. The making and the breaking of senescence: changes of gene expression during cellular aging and immortalization. Exp Gerontol 1998; 33(4):291–301.PubMedCrossRefGoogle Scholar
  53. 53.
    Herbig U, Sedivy JM. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev 2006; 127(1):16–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Bodnar A, Ooellette M, Frolkis M et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349–352.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang MW, Grillari J, Mayrhofer C et al. Comparison of early passage, senescent and hTERT immortalized endothelial cells. Exp Cell Res 2005; 309(1):121–136.PubMedCrossRefGoogle Scholar
  56. 56.
    Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 2000; 35(8):927–945.PubMedCrossRefGoogle Scholar
  57. 57.
    Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 1998; 16(9):1113–1123.PubMedCrossRefGoogle Scholar
  58. 58.
    Serrano M, Lin AW, McCurrach ME et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88(5):593–602.PubMedCrossRefGoogle Scholar
  59. 59.
    Barea F, Bonatto D. Aging defined by a chronologic-replicative protein network in Saccharomyces cerevisiae: an interactome analysis. Mech Ageing Dev 2009; 130(7):444–460.PubMedCrossRefGoogle Scholar
  60. 60.
    Jia L, Soengas MS, Sun Y. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis and senescence. Cancer Res 2009; 69(12):4974–4982.PubMedCrossRefGoogle Scholar
  61. 61.
    Young AP, Schlisio S, Minamishima YA et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 2008; 10(3):361–369.PubMedCrossRefGoogle Scholar
  62. 62.
    Li M, Shin YH, Hou L et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nat Cell Biol 2008; 10(9):1083–1089.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang H, Cohen SN. Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev 2004; 18(24):3028–3040.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang H, Teng Y, Kong Y et al. Suppression of human tumor cell proliferation by Smurf2-induced senescence. J Cell Physiol 2008; 215(3):613–620.PubMedCrossRefGoogle Scholar
  65. 65.
    Bischof O, Schwamborn K, Martin N et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 2006; 22(6):783–794.PubMedCrossRefGoogle Scholar
  66. 66.
    Mazurek S, Zwerschke W, Jansen-Durr P et al. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 2001; 356(Pt1):247–256.PubMedCrossRefGoogle Scholar
  67. 67.
    Li T, Santockyte R, Shen RF et al. Expression of SUMO-2/3 induced senescence through p53-and pRB-mediated pathways. J Biol Chem 2006; 281(47):36221–36227.PubMedCrossRefGoogle Scholar
  68. 68.
    Bischof O, Dejean A. SUMO is growing senescent. Cell Cycle 2007; 6(6):677–681.PubMedGoogle Scholar
  69. 69.
    Yates KE, Korbel GA, Shtutman M et al. Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 2008; 7(5):609–621.PubMedCrossRefGoogle Scholar
  70. 70.
    Pan JX, Short SR, Goff SA et al. Ubiquitin pools, ubiquitin mRNA levels and ubiquitin-mediated proteolysis in aging human fibroblasts. Exp Gerontol 1993; 28(1):39–49.PubMedCrossRefGoogle Scholar
  71. 71.
    Marfella R, Di Filippo C, Laieta MT et al. Effects of ubiquitin-proteasome system deregulation on the vascular senescence and atherosclerosis process in elderly patients. J Gerontol A Biol Sci Med Sci 2008; 63(2):200–203.PubMedGoogle Scholar
  72. 72.
    Forsythe HL, Jarvis JL, Turner JW et al. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 2001; 276(19):15571–15574.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim JH, Park SM, Kang MR et al. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 2005; 19(7):776–781.PubMedCrossRefGoogle Scholar
  74. 74.
    Smogorzewska A, van Steensel B, Bianchi A et al. Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 2000; 20(5):1659–1668.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee TH, Perrem K, Harper JW et al. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 2006; 281(2):759–768.PubMedCrossRefGoogle Scholar
  76. 76.
    Her YR, Chung IK. Ubiquitin ligase RLIM modulates telomere length homeostasis through a proteolysis of TRF1. J Biol Chem 2009; 284(13):8557–8566.PubMedCrossRefGoogle Scholar
  77. 77.
    Xhemalce B, Riising EM, Baumann P et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 2007; 104(3):893–898.PubMedCrossRefGoogle Scholar
  78. 78.
    Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 2007; 14(7):581–590.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee H, Sengupta N, Villagra A et al. Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 2006; 26(14):5259–5269.PubMedCrossRefGoogle Scholar
  80. 80.
    Condemine W, Takahashi Y, Le Bras M et al. A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 2007; 120(Pt18):3219–3227.PubMedCrossRefGoogle Scholar
  81. 81.
    Gottschling DE, Aparicio OM, Billington BL et al. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 1990; 63(4):751–762.PubMedCrossRefGoogle Scholar
  82. 82.
    Lou Z, Wei J, Riethman H et al. Telomere length regulates ISG15 expression in human cells. Aging 2009; 1(7):1–14.Google Scholar
  83. 83.
    Kyng KJ, May A, Stevnsner T et al. Gene expression responses to DNA damage are altered in human aging and in Werner syndrome. Oncogene 2005; 24(32):5026–5042.PubMedCrossRefGoogle Scholar
  84. 84.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411(6835):366–374.PubMedCrossRefGoogle Scholar
  85. 85.
    Cao L, Li W, Kim S et al. Senescence, aging and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 2003; 17(2):201–213.PubMedCrossRefGoogle Scholar
  86. 86.
    Nishikawa H, Ooka S, Sato K et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2004; 279(6):3916–3924.PubMedCrossRefGoogle Scholar
  87. 87.
    Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 2002; 21(24):6755–6762.PubMedCrossRefGoogle Scholar
  88. 88.
    Morris JR, Solomon E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 2004; 13(8):807–817.PubMedCrossRefGoogle Scholar
  89. 89.
    Sato K, Hayami R, Wu W et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2004; 279(30):30919–30922.PubMedCrossRefGoogle Scholar
  90. 90.
    Colombo E, Marine JC, Danovi D et al. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4(7):529–533.PubMedCrossRefGoogle Scholar
  91. 91.
    Hayami R, Sato K, Wu W et al. Down-regulation of BRCA1-BARD1 ubiquitin ligase by CDK2. Cancer Res 2005; 65(1):6–10.PubMedGoogle Scholar
  92. 92.
    Freedman DA, Folkman J. CDK2 translational down-regulation during endothelial senescence. Exp Cell Res 2005; 307(1):118–130.PubMedCrossRefGoogle Scholar
  93. 93.
    von Zglinicki T, Saretzki G, Ladhoff J et al. Human cell senescence as a DNA damage response. Mech Ageing Dev 2005; 126(1):111–117.CrossRefGoogle Scholar
  94. 94.
    Celeste A, Fernandez-Capetillo O, Kruhlak MJ et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003; 5(7):675–679.PubMedCrossRefGoogle Scholar
  95. 95.
    Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003; 15(2):164–171.PubMedCrossRefGoogle Scholar
  96. 96.
    Bergink S, Salomons FA, Hoogstraten D et al. DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev 2006; 20(10):1343–1352.PubMedCrossRefGoogle Scholar
  97. 97.
    Prosperi E. The fellowship of the rings: distinct pools of proliferating cell nuclear antigen trimer at work. FASEB J 2006; 20(7):833–837.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang N, Lu X, Legerski RJ. Partial reconstitution of human interstrand cross-link repair in vitro: characterization of the roles of RPA and PCNA. Biochem Biophys Res Commun 2003; 309(1):71–78.PubMedCrossRefGoogle Scholar
  99. 99.
    Watanabe K, Tateishi S, Kawasuji M et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 2004; 23(19):3886–3896.PubMedCrossRefGoogle Scholar
  100. 100.
    Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 2004; 14 (4):491–500.Google Scholar
  101. 101.
    Bienko M, Green CM, Crosetto N et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 2005; 310(5755):1821–1824.PubMedCrossRefGoogle Scholar
  102. 102.
    Masutani C, Kusumoto R, Yamada A et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 1999; 399(6737):700–704.Google Scholar
  103. 103.
    Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007; 129(4):665–679.PubMedCrossRefGoogle Scholar
  104. 104.
    Stein GH, Drullinger LF, Soulard ADV. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 1999; 19(3):2109–2117.PubMedGoogle Scholar
  105. 105.
    Fotedar R, Bendjennat M, Fotedar A. Role of p21WAF1 in the cellular response to UV. Cell Cycle 2004; 3(2):134–137.PubMedGoogle Scholar
  106. 106.
    Grillari J, Hohenwarter O, Grabherr RM et al. Subtractive hybridization of mRNA from early passage and senescent endothelial cells. Exp Gerontol 2000; 35(2):187–197.PubMedCrossRefGoogle Scholar
  107. 107.
    Voglauer R, Chang MW, Dampier B et al. SNEV overexpression extends the life span of human endothelial cells. Exp Cell Res 2006; 312(6):746–759.PubMedCrossRefGoogle Scholar
  108. 108.
    Hatakeyama S, Yada M, Matsumoto M et al. U-box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 2001; 276(35):33111–33120.PubMedCrossRefGoogle Scholar
  109. 109.
    Loscher M, Fortschegger K, Ritter G et al. Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20S proteasome. Biochem J 2005; 388(Pt 2):593–603.PubMedGoogle Scholar
  110. 110.
    Sihn CR, Cho SY, Lee JH et al. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome. Biochem Biophys Res Commun 2007; 356(1):175–180.PubMedCrossRefGoogle Scholar
  111. 111.
    Chondrogianni N, Stratford FL, Trougakos IP et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 2003; 278(30):28026–28037.PubMedCrossRefGoogle Scholar
  112. 112.
    Chondrogianni N, Tzavelas C, Pemberton AJ et al. Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 2005; 280(12):11840–11850.PubMedCrossRefGoogle Scholar
  113. 113.
    Fortschegger K, Wagner B, Voglauer R et al. Early embryonic lethality of mice lacking the essential protein SNEV. Mol Cell Biol 2007; 27(8):3123–3130.PubMedCrossRefGoogle Scholar
  114. 114.
    Schraml E, Voglauer R, Fortschegger K et al. Haploinsufficiency of senescence evasion factor causes defects of hematopoietic stem cells functions. Stem Cells Dev 2008; 17 (2):355–366.Google Scholar
  115. 115.
    Mahajan KN, Mitchell BS. Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci USA 2003; 100 (19):10746–10751.Google Scholar
  116. 116.
    Beck BD, Park SJ, Lee YJ et al. Human PSO4 is a Metnase (SETMAR) binding partner that regulates Metnase’ function in DNA repair. J Biol Chem 2008.Google Scholar
  117. 117.
    Zhang N, Kaur R, Lu X et al. The PSO4 MRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 2005; 280(49):40559–40567.PubMedCrossRefGoogle Scholar
  118. 118.
    Grillari J, Ajuh P, Stadler G et al. SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Res 2005; 33(21):6868–6883.PubMedCrossRefGoogle Scholar
  119. 119.
    Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000; 35(3):317–329.PubMedCrossRefGoogle Scholar
  120. 120.
    Tyner SD, Venkatachalam S, Choi J et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415 (6867):45–53.Google Scholar
  121. 121.
    Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4(10):793–805.PubMedCrossRefGoogle Scholar
  122. 122.
    Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell 2006; 21(3):307–315.PubMedCrossRefGoogle Scholar
  123. 123.
    Asher G, Tsvetkov P, Kahana C et al. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 2005; 19 (3):316–321.Google Scholar
  124. 124.
    Ghosh M, Weghorst K, Berberich SJ. MdmX inhibits ARF mediated Mdm2 sumoylation. Cell Cycle 2005; 4 (4):604–608.Google Scholar
  125. 125.
    den Besten W, Kuo ML, Tago K et al. Ubiquitination of and sumoylation by, the Arf tumor suppressor. Isr Med Assoc J 2006; 8(4):249–251.Google Scholar
  126. 126.
    Kuo ML, den Besten W, Thomas MC et al. Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 2008; 7(21):3378–3387.PubMedCrossRefGoogle Scholar
  127. 127.
    Huang Y, Wu M, Li HY. Tumor suppressor ARF promotes nonclassic proteasome-independent polyubiquitination of COMMD1. J Biol Chem 2008; 283(17):11453–11460.PubMedCrossRefGoogle Scholar
  128. 128.
    Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 1997; 277:831–834.PubMedCrossRefGoogle Scholar
  129. 129.
    Bornstein G, Bloom J, Sitry-Shevah D et al. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 2003; 278(28):25752–25757.PubMedCrossRefGoogle Scholar
  130. 130.
    Amador V, Ge S, Santamaria PG et al. APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 2007; 27(3):462–473.PubMedCrossRefGoogle Scholar
  131. 131.
    Abbas T, Sivaprasad U, Terai K et al. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 2008; 22(18):2496–2506.PubMedCrossRefGoogle Scholar
  132. 132.
    Nishitani H, Shiomi Y, Iida H et al. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 2008; 283(43):29045–29052.PubMedCrossRefGoogle Scholar
  133. 133.
    Lee H, Zeng SX, Lu H. UV Induces p21 rapid turnover independently of ubiquitin and Skp2. J Biol Chem 2006; 281(37):26876–26883.PubMedCrossRefGoogle Scholar
  134. 134.
    Li X, Amazit L, Long W et al. Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 2007; 26(6):831–842.PubMedCrossRefGoogle Scholar
  135. 135.
    Hwang CY, Kim IY, Kwon KS. Cytoplasmic localization and ubiquitination of p21(Cip1) by reactive oxygen species. Biochem Biophys Res Commun 2007; 358(1):219–225.PubMedCrossRefGoogle Scholar
  136. 136.
    Alcorta DA, Xiong Y, Phelps D et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Nat Acad Sci USA 1996; 93:13742–13747.PubMedCrossRefGoogle Scholar
  137. 137.
    Thullberg M, Bartkova J, Khan S et al. Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 2000; 470(2):161–166.PubMedCrossRefGoogle Scholar
  138. 138.
    Alexander K, Hinds PW. Requirement for p27(KIP1) in retinoblastoma protein-mediated senescence. Mol Cell Biol 2001; 21(11):3616–3631.PubMedCrossRefGoogle Scholar
  139. 139.
    Wagner M, Hampel B, Hutter E et al. Metabolic stabilization of p27 in senescent fibroblasts correlates with reduced expression of the F-box protein Skp2. Exp Gerontol 2001; 37:41–55.PubMedCrossRefGoogle Scholar
  140. 140.
    Matsunobu T, Tanaka K, Nakamura T et al. The possible role of EWS-Fli1 in evasion of senescence in Ewing family tumors. Cancer Res 2006; 66(2):803–811.PubMedCrossRefGoogle Scholar
  141. 141.
    Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8(4):253–267.PubMedCrossRefGoogle Scholar
  142. 142.
    Caballero OL, Resto V, Patturajan M et al. Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene 2002; 21(19):3003–3010.PubMedCrossRefGoogle Scholar
  143. 143.
    Marzban G, Grillari J, Reisinger E et al. Age-related alterations in the protein expression profile of C57BL/6J mouse pituitaries. Exp Gerontol 2002; 37(12):1451–1460.PubMedCrossRefGoogle Scholar
  144. 144.
    Lombardino AJ, Li XC, Hertel M et al. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels. Proc Natl Acad Sci USA 2005; 102(22):8036–8041.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhu Y, Carroll M, Papa FR et al. DUB-1, a deubiquitinating enzyme with growth-suppressing activity. Proc Natl Acad Sci USA 1996; 93(8):3275–3279.PubMedCrossRefGoogle Scholar
  146. 146.
    Burrows JF, McGrattan MJ, Rascle A et al. DUB-3, a cytokine-inducible deubiquitinating enzyme that blocks proliferation. J Biol Chem 2004; 279(14):13993–14000.PubMedCrossRefGoogle Scholar
  147. 147.
    Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424(6950): 801–805.PubMedCrossRefGoogle Scholar
  148. 148.
    Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424 (6950):793–796.Google Scholar
  149. 149.
    Massoumi R, Chmielarska K, Hennecke K et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125 (4):665–677.Google Scholar
  150. 150.
    Li Z, Wang D, Messing EM et al. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 2005; 6 (4):373–378.Google Scholar
  151. 151.
    Kato H, Inoue T, Asanoma K et al. Induction of human endometrial cancer cell senescence through modulation of HIF-1alpha activity by EGLN1. Int J Cancer 2006; 118 (5):1144–1153.Google Scholar
  152. 152.
    Minamino T, Mitsialis SA, Kourembanas S. Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 2001; 21(10):3336–3342.PubMedCrossRefGoogle Scholar
  153. 153.
    Frenkel-Denkberg G, Gershon D, Levy AP. The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 1999; 462(3):341–344.PubMedCrossRefGoogle Scholar
  154. 154.
    Rivard A, Berthou-Soulie L, Principe N et al. Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 2000; 275(38):29643–29647.PubMedCrossRefGoogle Scholar
  155. 155.
    Sibilia M, Wagner EF. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995; 269(5221):234–238.PubMedCrossRefGoogle Scholar
  156. 156.
    Shiraha H, Gupta K, Drabik K et al. Aging fibroblasts present reduced epidermal growth factor (EGF) responsiveness due to preferential loss of EGF receptors. J Biol Chem 2000; 275(25):19343–19351.PubMedCrossRefGoogle Scholar
  157. 157.
    Haglund K, Shimokawa N, Szymkiewicz I et al. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci USA 2002; 99(19):12191–12196.PubMedCrossRefGoogle Scholar
  158. 158.
    Hoeller D, Crosetto N, Blagoev B et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 2006; 8(2):163–169.PubMedCrossRefGoogle Scholar
  159. 159.
    Mizuno E, Iura T, Mukai A et al. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16(11):5163–5174.PubMedCrossRefGoogle Scholar
  160. 160.
    Tran KT, Rusu SD, Satish L et al. Aging-related attenuation of EGF receptor signaling is mediated in part by increased protein tyrosine phosphatase activity. Exp Cell Res 2003; 289(2):359–367.PubMedCrossRefGoogle Scholar
  161. 161.
    Park WY, Cho KA, Park JS et al. Attenuation of EGF signaling in senescent cells by caveolin. Ann N Y Acad Sci 2001; 928:79–84.PubMedCrossRefGoogle Scholar
  162. 162.
    Park SC, Park JS, Park WY et al. Down-regulation of receptor-mediated endocytosis is responsible for senescence-associated hyporesponsiveness. Ann N Y Acad Sci 2002; 959:45–49.PubMedCrossRefGoogle Scholar
  163. 163.
    Park JS, Park WY, Cho KA et al. Down-regulation of amphiphysin-1 is responsible for reduced receptor-mediated endocytosis in the senescent cells. FASEB J 2001; 15(9):1625–1627.PubMedGoogle Scholar
  164. 164.
    Jura N, Scotto-Lavino E, Sobczyk A et al. Differential modification of Ras proteins by ubiquitination. Mol Cell 2006; 21(5):679–687.PubMedCrossRefGoogle Scholar
  165. 165.
    Germain D. Ubiquitin-dependent and-independent mitochondrial protein quality controls: implications in ageing and neurodegenerative diseases. Mol Microbiol 2008; 70(6):1334–1341.PubMedCrossRefGoogle Scholar
  166. 166.
    Schulz JB. Update on the pathogenesis of Parkinson’s disease. J Neurol 2008; 255(Suppl 5):3–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Shimura H, Hattori N, Kubo S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3):302–305.PubMedCrossRefGoogle Scholar
  168. 168.
    Kao SY. DNA damage induces nuclear translocation of parkin. J Biomed Sci 2009; 16:67.PubMedCrossRefGoogle Scholar
  169. 169.
    Kao SY. Regulation of DNA repair by parkin. Biochem Biophys Res Commun 2009; 382(2):321–325.PubMedCrossRefGoogle Scholar
  170. 170.
    Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect 2007; 20(6):365–370.PubMedCrossRefGoogle Scholar
  171. 171.
    Wang C, Lu R, Ouyang X et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 2007; 27(32):8563–8570.PubMedCrossRefGoogle Scholar
  172. 172.
    Harding AJ, Stimson E, Henderson JM et al. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 2002; 125(Pt 11):2431–2445.PubMedCrossRefGoogle Scholar
  173. 173.
    Jahngen JH, Haas AL, Ciechanover A et al. The eye lens has an active ubiquitin-protein conjugation system. J Biol Chem 1986; 261(29):13760–13767.Google Scholar
  174. 174.
    Jahngen JJ, Eisenhauer D, Taylor A. Lens proteins are substrates for the reticulocyte ubiquitin conjugation system. Curr Eye Res 1986; 5(10):725–733.PubMedCrossRefGoogle Scholar
  175. 175.
    Jahngen JH, Lipman RD, Eisenhauer DA et al. Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates. Arch Biochem Biophys 1990; 276(1):32–37.PubMedCrossRefGoogle Scholar
  176. 176.
    Shang F, Gong X, Palmer HJ et al. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp Eye Res 1997; 64(1):21–30.PubMedCrossRefGoogle Scholar
  177. 177.
    Ruotolo R, Grassi F, Percudani R et al. Gene expression profiling in human age-related nuclear cataract. Mol Vis 2003; 9:538–548.PubMedGoogle Scholar
  178. 178.
    Hawse JR, Hejtmancik JF, Horwitz J et al. Identification and functional clustering of global gene expression differences between age-related cataract and clear human lenses and aged human lenses. Exp Eye Res 2004; 79(6):935–940.PubMedCrossRefGoogle Scholar
  179. 179.
    Zhang L, Li F, Dimayuga E et al. Effects of aging and dietary restriction on ubiquitination, sumoylation and the proteasome in the spleen. FEBS Lett 2007; 581 (28):5543–5547.Google Scholar
  180. 180.
    Shang F, Taylor A. Function of the ubiquitin proteolytic pathway in the eye. Exp Eye Res 2004; 78(1):1–14.PubMedCrossRefGoogle Scholar
  181. 181.
    Sano Y, Furuta A, Setsuie R et al. Photoreceptor cell apoptosis in the retinal degeneration of Uchl3-deficient mice. Am J Pathol 2006; 169(1):132–141.PubMedCrossRefGoogle Scholar
  182. 182.
    Marques C, Pereira P, Taylor A et al. Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J 2004; 18(12):1424–1426.PubMedGoogle Scholar
  183. 183.
    Anisimov VN. Life span extension and cancer risk: myths and reality. Exp Gerontol 2001; 36(7):1101–1136.PubMedCrossRefGoogle Scholar
  184. 184.
    Ingram DK, Zhu M, Mamczarz J et al. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5(2):97–108.PubMedCrossRefGoogle Scholar
  185. 185.
    Scrofano MM, Shang F, Nowell TR Jr et al. Aging, calorie restriction and ubiquitin-dependent proteolysis in the livers of Emory mice. Mech Ageing Dev 1998; 101(3):277–296.PubMedCrossRefGoogle Scholar
  186. 186.
    Scrofano MM, Shang F, Nowell TR Jr et al. Calorie restriction, stress and the ubiquitin-dependent pathway in mouse livers. Mech Ageing Dev 1998; 105(3):273–290.PubMedCrossRefGoogle Scholar
  187. 187.
    Chen J, Rider DA, Ruan R. Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver. J Gerontol A Biol Sci Med Sci 2006; 61(1):20–27.PubMedGoogle Scholar
  188. 188.
    Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83(3–4):301–310.PubMedCrossRefGoogle Scholar
  189. 189.
    Davies KJ, Shringarpure R. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurolog y 2006; 66(2 Suppl 1):S93–96.Google Scholar
  190. 190.
    Tsuchiya T, Higami Y, Komatsu T et al. Acute stress response in calorie-restricted rats to lipopolysaccharide-induced inflammation. Mech Ageing Dev 2005; 126(5):568–579.PubMedCrossRefGoogle Scholar
  191. 191.
    Li F, Zhang L, Craddock J et al. Aging and dietary restriction effects on ubiquitination, sumoylation and the proteasome in the heart. Mech Ageing Dev 2008; 129(9):515–521.PubMedCrossRefGoogle Scholar
  192. 192.
    Holzenberger M, Kappeler L, De Magalhaes Filho C. IGF-1 signaling and aging. Exp Gerontol 2004; 39(11–12):1761–1764.PubMedCrossRefGoogle Scholar
  193. 193.
    LeRoith D, Werner H, Beitner-Johnson D et al. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995; 16(2):143–163.PubMedGoogle Scholar
  194. 194.
    Lee KW, Cohen P. Nuclear effects: unexpected intracellular actions of insulin-like growth factor binding protein-3. J Endocrinol 2002; 175(1):33–40.PubMedCrossRefGoogle Scholar
  195. 195.
    Santer FR, Bacher N, Moser B et al. Nuclear insulin-like growth factor binding protein-3 induces apoptosis and is targeted to ubiquitin/proteasome-dependent proteolysis. Cancer Res 2006; 66(6):3024–3033.PubMedCrossRefGoogle Scholar
  196. 196.
    Lee KW, Liu B, Ma L et al. Cellular internalization of insulin-like growth factor binding protein-3: distinct endocytic pathways facilitate re-uptake and nuclear localization. J Biol Chem 2004; 279(1):469–476.PubMedCrossRefGoogle Scholar
  197. 197.
    Girnita L, Shenoy SK, Sehat B et al. |beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem 2005; 280(26):24412–24419.Google Scholar
  198. 198.
    Lee AV, Gooch JL, Oesterreich S et al. Insulin-like growth factor I-induced degradation of insulin receptor substrate 1 is mediated by the 26S proteasome and blocked by phosphatidylinositol 3′-kinase inhibition. Mol Cell Biol 2000; 20(5):1489–1496.PubMedCrossRefGoogle Scholar
  199. 199.
    Rui L, Fisher TL, Thomas J et al. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 2001; 276(43):40362–40367.PubMedGoogle Scholar
  200. 200.
    Adachi M, Katsumura KR, Fujii K et al. Proteasome-dependent decrease in Akt by growth factors in vascular smooth muscle cells. FEBS Lett 2003; 554(1–2):77–80.PubMedCrossRefGoogle Scholar
  201. 201.
    Sacheck JM, Ohtsuka A, McLary SC et al. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004; 287(4):E591–601.PubMedCrossRefGoogle Scholar
  202. 202.
    Fang CH, Li BG, Sun X et al. Insulin-like growth factor I reduces ubiquitin and ubiquitin-conjugating enzyme gene expression but does not inhibit muscle proteolysis in septic rats. Endocrinology 2000; 141(8):2743–2751.PubMedCrossRefGoogle Scholar
  203. 203.
    Dehoux M, Van Beneden R, Pasko N et al. Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology 2004; 145(11):4806–4812.PubMedCrossRefGoogle Scholar
  204. 204.
    Schulze PC, Spate U. Insulin-like growth factor-1 and muscle wasting in chronic heart failure. Int J Biochem Cell Biol 2005; 37(10):2023–2035.PubMedCrossRefGoogle Scholar
  205. 205.
    Argiles JM, Busquets S, Felipe A et al. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int J Biochem Cell Biol 2005; 37(5):1084–1104.PubMedCrossRefGoogle Scholar
  206. 206.
    Marzetti E, Anne Lees H, Eva Wohlgemuth S et al. Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors 2009; 35(1):28–35.PubMedCrossRefGoogle Scholar
  207. 207.
    Attaix D, Ventadour S, Codran A et al. The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 2005; 41:173–186.PubMedCrossRefGoogle Scholar
  208. 208.
    Cai D, Frantz JD, Tawa NE Jr et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004; 119(2):285–298.PubMedCrossRefGoogle Scholar
  209. 209.
    Cai D, Li M, Lee K et al. Age-related changes of aqueous protein profiles in rat fast and slow twitch skeletal muscles. Electrophoresis 2000; 21(2):465–472.PubMedCrossRefGoogle Scholar
  210. 210.
    Deruisseau KC, Kavazis AN, Powers SK. Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 2005; 40(6):526–]ReferencesPubMedCrossRefGoogle Scholar
  211. 211.
    Brenkman AB, de Keizer PL, van den Broek NJ et al. Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 2008; 3(7):e2819.PubMedCrossRefGoogle Scholar
  212. 212.
    Edstrom E, Altun M, Hagglund M et al. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61(7):663–674.PubMedGoogle Scholar
  213. 213.
    Combaret L, Dardevet D, Bechet D et al. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 2009; 12(1):37–41.PubMedCrossRefGoogle Scholar
  214. 214.
    Casas F, Pessemesse L, Grandemange S et al. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 2009; 4(5):e5631.PubMedCrossRefGoogle Scholar
  215. 215.
    Hirner S, Krohne C, Schuster A et al. MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies. J Mol Biol 2008; 379(4):666–677.PubMedCrossRefGoogle Scholar
  216. 216.
    Hsu YJ, Zimmer WE, Goodman SR. Erythrocyte spectrin’s chimeric E2/E3 ubiquitin conjugating/ ligating activity. Cell Mol Biol (Noisy-le-grand) 2005; 51(2):187–193.Google Scholar
  217. 217.
    Corsi D, Paiardini M, Crinelli R et al. Alteration of alpha-spectrin ubiquitination due to age-dependent changes in the erythrocyte membrane. Eur J Biochem 1999; 261(3):775–783.PubMedCrossRefGoogle Scholar
  218. 218.
    Waugh RE, Narla M, Jackson CW et al. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 1992; 79(5):1351–1358.PubMedGoogle Scholar
  219. 219.
    Simpson LO, O’Neill DJ. Red cell shape changes in the blood of people 60 years of age and older imply a role for blood rheology in the aging process. Gerontology 2003; 49(5):310–315.PubMedCrossRefGoogle Scholar
  220. 220.
    Samaja M, Rovida E, Motterlini R et al. The relationship between the blood oxygen transport and the human red cell aging process. Adv Exp Med Biol 1991; 307:115–123.PubMedGoogle Scholar
  221. 221.
    Wick G, Romen M, Amberger A et al. Atherosclerosis, autoimmunity and vascular-associated lymphoid tissue. FASEB J 1997; 11(13):1199–1207.PubMedGoogle Scholar
  222. 222.
    Grubeck-Loebenstein B, Wick G. The aging of the immune system. Adv Immunol 2002; 80:243–284.PubMedCrossRefGoogle Scholar
  223. 223.
    Ponnappan U. Regulation of transcription factor NF kappa B in immune senescence. Front Biosci 1998; 3:d152–168.PubMedGoogle Scholar
  224. 224.
    Ponnappan U. Ubiquitin-proteasome pathway is compromised in CD45RO??and CD45RA? T-lymphocyte subsets during aging. Exp Gerontol 2002; 37(2–3):359–367.PubMedCrossRefGoogle Scholar
  225. 225.
    Li X, Stark GR. NFkappaB-dependent signaling pathways. Exp Hematol 2002; 30(4):285–296.PubMedCrossRefGoogle Scholar
  226. 226.
    Carter RS, Pennington KN, Arrate P et al. Site-specific monoubiquitination of IkappaB kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 2005; 280(52):43272–43279.PubMedCrossRefGoogle Scholar
  227. 227.
    Carter RS, Pennington KN, Ungurait BJ et al. In vivo identification of inducible phosphoacceptors in the IKKgamma/NEMO subunit of human IkappaB kinase. J Biol Chem 2003; 278(22):19642–19648.PubMedCrossRefGoogle Scholar
  228. 228.
    Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430(7000):694–699.PubMedCrossRefGoogle Scholar
  229. 229.
    Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363–397.PubMedCrossRefGoogle Scholar
  230. 230.
    Zaidi G, Panda H, Supakar PC. Increased phosphorylation and decreased level of IkappaBalpha during aging in rat liver. Biogerontology 2005; 6(2):141–145.PubMedCrossRefGoogle Scholar
  231. 231.
    Hollander J, Bejma J, Ookawara T et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 2000; 116(1):33–45.PubMedCrossRefGoogle Scholar
  232. 232.
    Martin GM. Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig Artic Ser 1978; 14(1):5–39.PubMedGoogle Scholar
  233. 233.
    Martin GM. Genetic modulation of senescent phenotypes in Homo sapiens. Cell 2005; 120(4):523–532.PubMedCrossRefGoogle Scholar
  234. 234.
    Grillari J, Katinger H, Voglauer R. SNEVPrp19/Pso4 is a conserved, multifaceted E3 ligase involved in replicative senescence, DNA repair and pre-mRNA splicing. PRP19 Targeted Proteins Database; 2007.Google Scholar
  235. 235.
    Alpi AF, Patel KJ. Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair (Amst) 2009; 8(4):430–435.CrossRefGoogle Scholar
  236. 236.
    Taniguchi T, Garcia-Higuera I, Andreassen PR et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 2002; 100(7):2414–2420.PubMedCrossRefGoogle Scholar
  237. 237.
    Zhang X, Li J, Sejas DP et al. Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood 2005; 106(1):75–85.PubMedCrossRefGoogle Scholar
  238. 238.
    Garcia-Higuera I, Taniguchi T, Ganesan S et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7(2):249–262.PubMedCrossRefGoogle Scholar
  239. 239.
    Hartmann-Petersen R, Wallace M, Hofmann K et al. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol 2004; 14(9):824–828.PubMedCrossRefGoogle Scholar
  240. 240.
    Wojcik C, Yano M, DeMartino GN. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J Cell Sci 2004; 117(Pt 2):281–292.PubMedCrossRefGoogle Scholar
  241. 241.
    Yin J, Kwon YT, Varshavsky A et al. RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 2004; 13(20):2421–2430.PubMedCrossRefGoogle Scholar
  242. 242.
    Eriksson M, Brown WT, Gordon LB et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003; 423(6937):293–298.PubMedCrossRefGoogle Scholar
  243. 243.
    De Sandre-Giovannoli A, Bernard R, Cau P et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003; 300(5628):2055.PubMedCrossRefGoogle Scholar
  244. 244.
    Zhong N, Radu G, Ju W et al. Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18 and UBC9 interact with lamin A/C. Biochem Biophys Res Commun 2005; 338(2):855–861.PubMedCrossRefGoogle Scholar
  245. 245.
    Zhang YQ, Sarge KD. Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J Cell Biol 2008; 182(1):35–39.PubMedCrossRefGoogle Scholar
  246. 246.
    Taylor A, Shang F, Nowell T et al. Ubiquitination capabilities in response to neocarzinostatin and H(2)O(2) stress in cell lines from patients with ataxia-telangiectasia. Oncogene 2002; 21(28):4363–4373.PubMedCrossRefGoogle Scholar
  247. 247.
    Herbig U, Jobling WA, Chen BP et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53 and p21(CIP1), but not p16(INK4a). Mol Cell 2004; 14(4):501–513.PubMedCrossRefGoogle Scholar
  248. 248.
    Weirich-Schwaiger H, Weirich HG, Gruber B et al. Correlation between senescence and DNA repair in cells from young and old individuals and in premature aging syndromes. Mutat Res 1994; 316(1):37–48.PubMedGoogle Scholar
  249. 249.
    Shang F, Nowell T, Gong X et al. Sex-linked differences in cataract progression in Emory mice. Exp Eye Res 2002; 75(1):109–111.PubMedCrossRefGoogle Scholar
  250. 250.
    Bowerman B. C. elegans aging: proteolysis cuts both ways. Curr Biol 2007; 17(13):R514–516.PubMedCrossRefGoogle Scholar
  251. 251.
    Li W, Gao B, Lee SM et al. RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Dev Cell 2007; 12(2):235–246.PubMedCrossRefGoogle Scholar
  252. 252.
    Ghazi A, Henis-Korenblit S, Kenyon C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci USA 2007; 104(14):5947–5952.PubMedCrossRefGoogle Scholar
  253. 253.
    Mehta R, Steinkraus KA, Sutphin GL et al. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 2009; 324(5931):1196–1198.PubMedCrossRefGoogle Scholar
  254. 254.
    Min JN, Whaley RA, Sharpless NE et al. CHIP deficiency decreases longevity with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol 2008.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Johannes Grillari
    • 1
    Email author
  • Regina Grillari-Voglauer
    • 1
  • Pidder Jansen-Dürr
    • 1
  1. 1.Institute of Applied Microbiology, Department of BiotechnologyUniversity for Natural Resources and Applied Life Sciences, ViennaViennaAustria

Personalised recommendations