Zero-divisor graphs in commutative rings

  • David F. Anderson
  • Michael C. Axtell
  • Joe A. SticklesJr.
Chapter

Abstract

This article surveys the recent and active area of zero-divisor graphs of commutative rings. Notable algebraic and graphical results are given, followed by a historical overview and an extensive bibliography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbari, S., Bidkhori, H., Mohammadian, A.: Commuting graphs of matrix algebras. Comm. Algebra 36(11), 4020–4031 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Akbari, S., Ghandehari, M., Hadian, M., Mohammadian, A.: On commuting graphs of semisimple rings. Linear Algebra Appl. 390, 345–355 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Akbari, S., Maimani, H.R., Yassemi, S.: When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270(1), 169–180 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring. J. Algebra 274(2), 847–855 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Akbari, S., Mohammadian, A.: Zero-divisor graphs of non-commutative rings. J. Algebra 296(2), 462–479 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Akbari, S., Mohammadian, A.: On zero-divisor graphs of finite rings. J. Algebra 314(1), 168–184 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Akhtar, R., Lee, L.: Homology of zero-divisors. Rocky Mt. J. Math. 37(4), 1105–1126 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, D.D., Naseer, M.: Beck’s coloring of a commutative ring. J. Algebra 159(2), 500–514 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Anderson, D.F.: On the diameter and girth of a zero-divisor graph, II. Houst. J. Math. 34(2), 361–371 (2008)MATHGoogle Scholar
  10. 10.
    Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36(8), 3073–3092 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Anderson, D.F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320(7), 2706–2719 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Anderson, D.F., Frazier, A., Lauve, A., Livingston, P.S.: The zero-divisor graph of a commutative ring, II. Lect. Notes Pure Appl. Math. 220, 61–72 (2001)MathSciNetGoogle Scholar
  13. 13.
    Anderson, D.F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180(3), 221–241 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217(2), 434–447 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2), 543–550 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Atiyah, M.F., MacDonald, I.G.: “Introduction to Commutative Algebra”. Perseus Book, Cambridge, Massachusetts (1969)MATHGoogle Scholar
  17. 17.
    Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomial and power series over commutative rings. Comm. Algebra 33(6), 2043–2050 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Axtell, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204(2), 235–243 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Axtell, M., Stickles, J.: Irreducible divisor graphs in commutative rings with zero-divisors. Comm. Algebra 36(5), 1883–1893 (2008)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Axtell, M., Stickles, J., Trampbachls, W.: Zero-divisor ideals and realizable zero-divisor graphs. Involve 2(1), 17–27 (2009)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Axtell, M., Stickles, J., Warfel, J.: Zero-divisor graphs of direct products of commutative rings. Houst. J. Math. 32(4), 985–994 (2006)MATHMathSciNetGoogle Scholar
  22. 22.
    Azarpanah, F., Motamedi, M.: Zero-divisor graph of C(X). Acta. Math. Hung. 108(1–2), 25–36 (2005)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208–226 (1988)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Behboodi, M.: Zero divisor graphs for modules over commutative rings. J. Commut. Algebra, to appearGoogle Scholar
  25. 25.
    Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316(1), 471–480 (2007)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Bhat, V.K., Raina, R., Nehra, N., Prakash, O.: A note on zero divisor graph over rings. Int. J. Contemp. Math. Sci. 2(13–16), 667–671 (2007)MATHMathSciNetGoogle Scholar
  27. 27.
    Bhatwadekar, S.M., Dumaldar, M.N., Sharma, P.K.: Some non-chromatic rings. Comm. Algebra 26(2), 477–505 (1998)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Canon, G., Neuburg, K., Redmond, S.P.: Zero-divisor graphs of nearrings and semigroups, Nearrings and Nearfields, pp. 189–200. Springer, Dordrecht (2005)Google Scholar
  29. 29.
    Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings. Electron. Notes Discrete Math. 23, 23–32 (2005)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Chiang-Hsieh, H.-J.: Classification of rings with projective zero-divisor graphs. J. Algebra 319(7), 2789–2802 (2008)MATHMathSciNetGoogle Scholar
  31. 31.
    Chiang-Hsieh, H.-J., Wang, H.-J., Smith, N.O., Commutative rings with toroidal zero-divisor graphs. Houst. J. Math. 36(1), 1–31 (2010)MathSciNetGoogle Scholar
  32. 32.
    Coykendall, J., Maney, J.: Irreducible divisor graphs. Comm. Algebra 35(3), 885–896 (2007)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal. J. Algebra Appl. 6(3), 443–459 (2007)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    DeMeyer, F., DeMeyer, L.: Zero-divisor graphs of semigroups. J. Algebra 283(1), 190–198 (2005)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum 65(2), 206–214 (2002)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings. Int. J. Commut. Rings 1(3), 93–106 (2002)Google Scholar
  37. 37.
    DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings, Commutative rings, pp. 25–37. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [36])Google Scholar
  38. 38.
    Diestel, R.: “Graph theory”. Springer, New York (1997)MATHGoogle Scholar
  39. 39.
    Dumaldar, M.N., Sharma, P.K.: Comments over “Some non-chromatic rings”. Comm. Algebra 26(11), 3871–3883 (1998)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Ebrahimi Atani, S., Ebrahimi Sarvandi, Z.: Zero-divisor graphs of idealizations with respect to prime modules. Int. J. Contemp. Math. Sci. 2(25–28), 1279–1283 (2007)MathSciNetGoogle Scholar
  41. 41.
    Ebrahimi Atani, S., Kohan, M.: The diameter of a zero-divisor graph for finite direct product of commutative rings. Sarajevo J. Math. 3(16), 149–156 (2007)MathSciNetGoogle Scholar
  42. 42.
    Eslahchi, C., Rahimi, A.: The k-zero-divisor hypergraph of a commutative ring. Int. J. Math. Math. Sci., Art. ID 50875, 15 (2007)Google Scholar
  43. 43.
    Ganesan, N.: Properties of rings with a finite number of zero-divisors. Math. Ann. 157, 215–218 (1964)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Gilmer, R.: Zero divisors in commutative rings. Am. Math. Monthly 93(5), 382–387 (1986)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Huckaba, J.A.: “Commutative rings with zero divisors”. Marcel Dekker, New York/Basil (1988)MATHGoogle Scholar
  46. 46.
    LaGrange, J.D.: Complemented zero-divisor graphs and Boolean rings. J. Algebra 315(2), 600–611 (2007)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    LaGrange, J.D.: On realizing zero-divisor graphs. Comm. Algebra 36(12), 4509–4520 (2008)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    LaGrange, J.D.: The cardinality of an annihilator class in a von Neumann regular ring. Int. Electron. J. Algebra 4, 63–82 (2008)MATHMathSciNetGoogle Scholar
  49. 49.
    LaGrange, J.D.: Invariants and isomorphism theorems for zero-divisor graphs of commutative rings of quotients, preprintGoogle Scholar
  50. 50.
    LaGrange, J.D.: Weakly central-vertex complete graphs with applications to commutative rings. J. Pure Appl. Algebra 214(7), 1121–1130 (2010)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    LaGrange, J.D.: Characterizations of three classes of zero-divisor graphs. Can. Math. Bull. to appearGoogle Scholar
  52. 52.
    Lambeck, J.: “Lectures on rings and modules”. Blaisdell Publishing Company, Waltham (1966)Google Scholar
  53. 53.
    Lauve, A.: Zero-divisor graphs of finite commutative rings. Honors Senior Thesis, The University of Oklahoma, Norman, OK, April, 1999Google Scholar
  54. 54.
    Levy, R., Shapiro, J.: The zero-divisor graph of von Neumann regular rings. Comm. Algebra 30(2), 745–750 (2002)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Livingston, P.S.: Structure in zero-divisor graphs of commutative rings. Masters Thesis, The University of Tennessee, Knoxville, TN, Dec. 1997Google Scholar
  56. 56.
    Long, Y., Huang, Y.: The correspondence between zero-divisor graphs with 6 vertices and their semigroups. J. Algebra Appl. 6(2), 287–290 (2007)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Lu, D., Tong, W.: The zero-divisor graphs of abelian regular rings. Northeast. Math. J. 20(3), 339–348 (2004)MATHMathSciNetGoogle Scholar
  58. 58.
    Lu, D., Wu, T.: The zero-divisor graphs which are uniquely determined by neighborhoods. Comm. Algebra 35(12), 3855–3864 (2007)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Lucas, T.G.: The diameter of a zero-divisor graph. J. Algebra 301(1), 174–193 (2006)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Maimani, H.R., Pournaki, M.R., Yassemi, S.: Zero-divisor graphs with respect to an ideal. Comm. Algebra 34(3), 923–929 (2006)MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graphs of commutative rings. J. Algebra 319(4), 1801–1808 (2008)MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Maimani, H.R., Yassemi, S.: Zero-divisor graphs of amalgamated duplication of a ring along an ideal. J. Pure Appl. Algebra 212(1), 168–174 (2008)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Maney, J.: Irreducible divisor graphs, II. Comm. Algebra 36(9), 3496–3513 (2008)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Mulay, S.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30(7), 3533–3558 (2002)MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Mulay, S.B.: Rings having zero-divisor graphs of small diameter or large girth. Bull. Aust. Math. Soc. 72(3), 481–490 (2005)MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Mulay, S.B., Chance, M.: Symmetries of colored power-set graphs. J. Commut. Algebra, to appearGoogle Scholar
  67. 67.
    Redmond, S.P.: The zero-divisor graph of a non-commutative ring. Int. J. Commut. Rings 1(4), 203–211 (2002)Google Scholar
  68. 68.
    Redmond, S.P.: The zero-divisor graph of a non-commutative ring, Commutative Rings, pp. 39–47. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [67])Google Scholar
  69. 69.
    Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Comm. Algebra 31(9), 4425–4443 (2003)MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Redmond, S.P.: Structure in the zero-divisor graph of a non-commutative ring. Houst. J. Math. 30(2), 345–355 (2004)MATHMathSciNetGoogle Scholar
  71. 71.
    Redmond, S.P.: Central sets and radii of the zero-divisor graphs of commutative rings. Comm. Algebra 34(7), 2389–2401 (2006)MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Redmond, S.P.: On zero-divisor graphs of small finite commutative rings. Discrete Math. 307(9), 1155–1166 (2007)MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Redmond, S.P.: Counting zero-divisors, Commutative Rings: New Research, pp. 7–12. Nova Science Publishers, Hauppauge, NY (2009)Google Scholar
  74. 74.
    Samei, K.: The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 209(3), 813–821 (2007)MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Sharma, P.K., Bharwadekar, S.M.: Zero-divisor graphs with respect to an ideal. J. Algebra 176(1), 124–127 (1995)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Smith, N.O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2(4), 177–188 (2003)MATHGoogle Scholar
  77. 77.
    Smith, N.O.: Graph-theoretic Properties of the Zero-Divisor Graph of a Ring. Dissertation, The University of Tennessee, Knoxville, TN, May 2004Google Scholar
  78. 78.
    Smith, N.O.: Planar zero-divisor graphs, Focus on commutative rings research, pp. 177–186. Nova Science Publishers, New York (2006). (Reprint of [76])Google Scholar
  79. 79.
    Smith, N.O.: Infinite planar zero-divisor graphs. Comm. Algebra 35(1), 171–180 (2007)MATHMathSciNetGoogle Scholar
  80. 80.
    Taylor, M.: Zero-divisor graphs with looped vertices. preprintGoogle Scholar
  81. 81.
    Vishne, U.: The graph of zero-divisor ideals. preprintGoogle Scholar
  82. 82.
    Wang, H.-J.: Zero-divisor graphs of genus one. J. Algebra 304(2), 666–678 (2006)MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm. Algebra 36(2), 325–345 (2008)MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Wright, S.: Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Comm. Algebra 35(6), 1987–1991 (2007)MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Wu, T.: On directed zero-divisor graphs of finite rings. Discrete Math. 296(1), 73–86 (2005)MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Wu, T., Lu, D.: Zero-divisor semigroups and some simple graphs. Comm. Algebra 34(8), 3043–3052 (2006)MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Wu, T., Lu, D.: Sub-semigroups determined by the zero-divisor graph. Discrete Math. 308(22), 5122–5135 (2008)MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Zuo, M., Wu, T.: A new graph structure of commutative semigroups. Semigroup Forum 70(1), 71–80 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David F. Anderson
    • 1
  • Michael C. Axtell
    • 2
  • Joe A. SticklesJr.
    • 3
  1. 1.The University of TennesseeKnoxvilleUSA
  2. 2.University of St. ThomasSt. PaulUSA
  3. 3.Millikin UniversityDecaturUSA

Personalised recommendations