Advertisement

Modeling in Immunization and Biosurveillance Research

  • C. Raina Macintyre
  • James G. Wood
  • Rochelle Watkins
  • Zhanhai Gao
Chapter
Part of the Integrated Series in Information Systems book series (ISIS, volume 27)

Chapter Overview

This chapter introduces the key concepts in mathematical modeling of vaccine-preventable diseases, and special features of vaccination such as herd immunity, disease elimination and waning immunity. It also reviews the interface of biosurveillance with monitoring and control of vaccine-preventable diseases.

Keywords

Vaccines Immunization Mathematical Modeling Biosurveillance 

References

  1. Anderson, R. M. and M. M. May (1999). Infectious Diseases of Humans, Dynamics and Control. London, Oxford University Press.Google Scholar
  2. Ashmore, J., S. Addiman, et al. (2007). “Measles in North East and North Central London, England: a situation report.” Euro Surveill 12 (9): E070920.2.PubMedGoogle Scholar
  3. Bailey, N. (1975). The Mathematical Theory of Infectious Diseases. London, Charles Griffin and Company.Google Scholar
  4. Becker, N. G., Z. Li, et al. (2005). “Monitoring measles elimination in Victoria.” Aust N Z J Public Health 29 (1): 58–63.PubMedCrossRefGoogle Scholar
  5. Brundage, J. F. (2006). “Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness.” Lancet Infect Dis 6 (5): 303–12.CrossRefGoogle Scholar
  6. Cauchemez, S., P. Y. Boelle, et al. (2006). “Estimating in real time the efficacy of measures to control emerging communicable diseases.” Am J Epidemiol 164 (6): 591–7.PubMedCrossRefGoogle Scholar
  7. Centers for Disease Control and Prevention (1996). “Update: diphtheria epidemic —New Independent States of the Former Soviet Union, January 1995–March 1996.” MMWR Morb Mortal Wkly Rep 45 (32): 693–7.Google Scholar
  8. Daley, D. and J. Gani (2001). Epidemic Modelling: An Introduction. Cambridge, UK, Cambridge University Press.Google Scholar
  9. Diekmann, O. and J. Heesterbeek (2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. New York, John Wiley & Sons.Google Scholar
  10. Dobson, R. (2008). “England and Wales are among European countries at highest risk of measles epidemic.” BMJ 336 (7635): 66.PubMedCrossRefGoogle Scholar
  11. Farrington, C. P., M. N. Kanaan, et al. (2003). “Branching process models for surveillance of infectious diseases controlled by mass vaccination.” Biostatistics 4 (2): 279–95.PubMedCrossRefGoogle Scholar
  12. Galil, K, R. Singleton, et al. (1999). “Reemergence of invasive Haemophilus influenzae type b disease in a well-vaccinated population in remote Alaska.” J Infect Dis 179 (1): 101–6.PubMedCrossRefGoogle Scholar
  13. Gay, N. J., L. M. Hesketh, et al. (1995). “Interpretation of serological surveillance data for measles using mathematical models: implications for vaccine strategy.” Epidemiol Infect 115 (1): 139–56.PubMedCrossRefGoogle Scholar
  14. Halloran, M. E., I. M. Longini, Jr., et al. (1999). “Design and interpretation of vaccine field studies.” Epidemiol Rev 21 (1): 73–88.PubMedCrossRefGoogle Scholar
  15. Haydon, D. T., M. Chase-Topping, et al. (2003). “The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak.” Proc Biol Sci 270 (1511): 121–7.PubMedCrossRefGoogle Scholar
  16. Heesterbeek, J. A. (2002). “A brief history of R 0and a recipe for its calculation.” Acta Biotheor 50 (3): 189–204. Hinman, A. (1999). “Eradication of vaccine-preventable diseases.” Annu Rev Public Health 20 : 211–29.PubMedCrossRefGoogle Scholar
  17. Hinman, A. (1999). “Eradication of vaccine-preventable diseases.” Annu Rev Public Health 20 : 211–29.PubMedCrossRefGoogle Scholar
  18. Institute of Medicine (2000). Vaccines for the 21st Century: Tools for Decision Making. Washington, DC, National Academy Press.Google Scholar
  19. Jacobsen, K. H. and J. S. Koopman (2005). “The effects of socioeconomic development on worldwide hepatitis A virus seroprevalence patterns.” Int J Epidemiol 34 (3): 600–9.PubMedCrossRefGoogle Scholar
  20. Keeling, M. and P. Rohani (2007). Modeling Infectious Diseases in Humans and Animals. New Jersey, Princeton University Press.Google Scholar
  21. Leung, J., A. Rue, et al. (2008). “Varicella outbreak reporting, response, management, and national surveillance.” J Infect Dis 197 Suppl 2 : S108–13.PubMedCrossRefGoogle Scholar
  22. Lloyd-Smith, J. O., S. J. Schreiber, et al. (2005). “Superspreading and the effect of individual variation on disease emergence.” Nature 438 (7066): 355–9.PubMedCrossRefGoogle Scholar
  23. Matthews, L. and M. Woolhouse (2005). “New approaches to quantifying the spread of infection.” Nat Rev Microbiol 3 (7): 529–36.PubMedCrossRefGoogle Scholar
  24. Miller, E., J. E. Vurdien, et al. (1992). “The epidemiology of pertussis in England and Wales.” Commun Dis Rep CDR Rev 2 (13): R152–4.PubMedGoogle Scholar
  25. Mossong, J., N. Hens, et al. (2008). “Social contacts and mixing patterns relevant to the spread of infectious diseases.” PLoS Med 5 (3): e74.PubMedCrossRefGoogle Scholar
  26. Oostvogel, P. M., J. K. van Wijngaarden, et al. (1994). “Poliomyelitis outbreak in an unvaccinated community in The Netherlands, 1992–93.” Lancet 344 (8923): 665–70.PubMedCrossRefGoogle Scholar
  27. Rijkers, G. T., P. E. Vermeer-de Bondt, et al. (2003). “Return of Haemophilus influenzae type b infections.” Lancet 361 (9368): 1563–4.PubMedCrossRefGoogle Scholar
  28. Roberts, M. G. and M. I. Tobias (2000). “Predicting and preventing measles epidemics in New Zealand: application of a mathematical model.” Epidemiol Infect 124 (2): 279–87.PubMedCrossRefGoogle Scholar
  29. Trotter, C. L., M. E. Ramsay, et al. (2003). “Rising incidence of Haemophilus influenzae type b disease in England and Wales indicates a need for a second catch-up vaccination campaign.” Commun Dis Public Health 6 (1): 55–8.PubMedGoogle Scholar
  30. Veenhoven, R. H, D. Bogaert, et al. (2004). “Nasopharyngeal pneumococcal carriage after combined pneumococcal conjugate and polysaccharide vaccination in children with a history of recurrent acute otitis media.” Clin Infect Dis 39 (7): 911–9.PubMedCrossRefGoogle Scholar
  31. Wallinga, J. and M. Lipsitch (2007). “How generation intervals shape the relationship between growth rates and reproductive numbers.” Proc Biol Sci 274 (1609): 599–604.PubMedCrossRefGoogle Scholar

Suggested Reading

  1. Anderson, R. M. and M. M. May (1999). Infectious Diseases of Humans, Dynamics and Control. London, Oxford University Press.Google Scholar
  2. Heesterbeek, J. A. (2002). “A brief history of R 0and a recipe for its calculation.” Acta Biotheor 50 (3): 189–204.PubMedCrossRefGoogle Scholar
  3. Hinman, A. (1999). “Eradication of vaccine-preventable diseases.” Annu Rev Public Health 20 : 211–29.PubMedCrossRefGoogle Scholar
  4. Matthews, L. and M. Woolhouse (2005). “New approaches to quantifying the spread of infection.” Nat Rev Microbiol 3 (7): 529–36.PubMedCrossRefGoogle Scholar
  5. Trotter, C. L., M. E. Ramsay, et al. (2003). “Rising incidence of Haemophilus influenzae type b disease in England and Wales indicates a need for a second catch-up vaccination campaign.” Commun Dis Public Health 6 (1): 55–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. Raina Macintyre
    • 1
  • James G. Wood
    • 1
  • Rochelle Watkins
    • 2
  • Zhanhai Gao
    • 1
  1. 1.Faculty of MedicineSchool of Public Health and Community Medicine, UNSWSydneyAustralia
  2. 2.Faculty of Health ScienceCurtin University of TechnologyPerthAustralia

Personalised recommendations