Sampling Protein Energy Landscapes – The Quest for Efficient Algorithms

  • Ulrich H. E. Hansmann


Computer simulations aim to become virtual microscopes that can probe the working of cells on a molecular level. One of the remaining obstacles is still poor sampling. This chapter reviews strategies for faster sampling and discusses their limitations. Recent applications to protein folding document the utility of the described techniques.


Random Walk Canonical Ensemble Energy Landscape Parallel Tempering Protein Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support by the National Science Foundation (research grants CHE-998174, 0313618, 0809002) and the National Institutes of Health (GM62838) are acknowledged.


  1. Androulakis IP, Maranas CD, Floudas CA (1997) Prediction of oligopeptide conformations via deterministic global optimization. J Global Optim 11:1–34CrossRefGoogle Scholar
  2. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  3. Allen F, Almasi G, Andreoni W, Beece D, Berne BJ, Bright A, Brunheroto J, Cascaval C, Castanos J, Coteus P, Crumley P, Curioni A, Denneau M, Donath W, Eleftheriou W, Fitch B, Fleischer B, Georgiou CJ, Germain R, Giampapa M, Gresh D, Gupta M, Haring R, Ho H, Hochschild P, Hummel S, Jonas T, Lieber D, Martyna G, Maturu K, Moreira J, Newns D, Newton M, Philhower R, Picunko T, Pitera J, Pitman M, Rand R, Royyuru A, Salapura V, Sanomiya A, Shah R, Sham Y, Singh S, Snir M, Suits F, Swetz R, Swope RC, Vishnumurthy B, Ward TJC, Warren H, Zhou R (2001) Blue gene: a vision for protein science using a petaflop supercomputer. IBM Syst J 40:310–327CrossRefGoogle Scholar
  4. Berg BA, Neuhaus T (1991) Multicanonical algorithms for first order phase transitions. Phys Lett B 267:249–253CrossRefGoogle Scholar
  5. Berg BA (2003) Metropolis importance sampling for rugged dynamical variables. Phys Rev Lett 90:180601PubMedCrossRefGoogle Scholar
  6. Berg BA (2004) Markov chain Monte Carlo simulations and their statistical analysis. World Scientific, SingaporeGoogle Scholar
  7. Besold G, Risbo J, Mouritsen OG (1999) Efficient Monte Carlo sampling by direct flattening of free energy barriers. Comp Mater Sci 15:311–340CrossRefGoogle Scholar
  8. Brass A, Pendleton BJ, Chen Y, Robson B (1993) Hybrid Monte Carlo simulation theory and initial comparison with molecular dynamics. Biopolymers 33:1307–1315CrossRefGoogle Scholar
  9. Curado EMF, Tsallis C (1994) Possible generalization of Boltzmann–Gibbs statistics. J Phys A-Math Gen 27:3663CrossRefGoogle Scholar
  10. Cvijovic D, Klinowski J (1995) Taboo search: an approach to the multiple minima problem. Science 267:664–666CrossRefGoogle Scholar
  11. Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 28:18–25PubMedCrossRefGoogle Scholar
  12. Daggett V (2002) Molecular dynamics simulations of the protein unfolding/folding reaction. Acc Chem Res 35:422–429PubMedCrossRefGoogle Scholar
  13. Dantas G, Watters AL, Lunde BM, Eletr ZM, Isern NG, Roseman T, Lipfert J, Doniach S, Tompa M, Kuhlman B, Stoddard BL, Varani G, Baker D (2006) Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution. J Mol Biol 362:1004–1024PubMedCrossRefGoogle Scholar
  14. Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid Monte Carlo. Phys Lett B 195:216–221CrossRefGoogle Scholar
  15. Favrin G, Irback A, Sjunnesson F (2001) Monte Carlo update for chain molecules: Biases Gaussian steps in torsional space. J Chem Phys 114:8154–8158CrossRefGoogle Scholar
  16. Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638PubMedCrossRefGoogle Scholar
  17. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198PubMedCrossRefGoogle Scholar
  18. Frenkel D, Smit B (2001) Understanding molecular simulation. From algorithms to applications. In: Computational science series, vol 1, 2nd edn. Academic, New York, NYGoogle Scholar
  19. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE T Pattern Anal 6:721–741CrossRefGoogle Scholar
  20. Geyer GJ, Thompson EA (1995) Annealing Markov Chain Monte Carlo with applications to ancestral inference. J Am Stat Assoc 90:909–920CrossRefGoogle Scholar
  21. Gosavi S, Chavez LL, Jennings PA, Onuchic JN (2006) Topological frustration and the folding of interleukin-1 beta. J Mol Biol 357:986–996PubMedCrossRefGoogle Scholar
  22. Gront D, Kolinski A, Hansmann UHE (2005) Exploring protein energy landscape with hierarchical clustering. Int J Quant Chem 105:826CrossRefGoogle Scholar
  23. Gō N, Scheraga HA (1970) Ring closure and local conformational deformations of chain molecules. Macromolecules 3:178–187CrossRefGoogle Scholar
  24. Hansmann UHE, Okamoto Y (1993) Prediction of peptide conformation by multicanonical algorithm: a new approach to the multiple-minima problem. J Comp Chem 14:1333–1338CrossRefGoogle Scholar
  25. Hansmann UHE, Okamoto Y (1994) Comparative study of multicanonical and simulated annealing algorithms in the protein folding problem. Physica A 212:415–437CrossRefGoogle Scholar
  26. Hansmann UHE, Okamoto Y, Eisenmenger F (1996) Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem Phys Lett 259:321–330CrossRefGoogle Scholar
  27. Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281:140–150CrossRefGoogle Scholar
  28. Hansmann UHE, Okamoto Y (1998) The generalized-ensemble approach for protein folding simulations. In: Stauffer D (ed) Annual reviews in computational physics, vol. VI. World Scientific, SingaporeGoogle Scholar
  29. Hansmann UHE, Okamoto Y (1999a) New Monte Carlo algorithms for protein folding. Curr Opin Struc Biol 9:177–184CrossRefGoogle Scholar
  30. Hansmann UHE (1999) Protein folding simulations in a deformed energy landscape. Eur Phys J B 12:607–612CrossRefGoogle Scholar
  31. Hansmann UHE, Okamoto Y (1999b) Finite-size scaling of helix–coil transitions in poly-alanine studied by multicanonical simulations. J Chem Phys 110:1267–1276CrossRefGoogle Scholar
  32. Hansmann UHE, Wille L (2002) Global optimization by energy landscape paving. Phys Rev Lett 88:068105PubMedCrossRefGoogle Scholar
  33. Hansmann UHE (2003) Protein folding in silico – an overview. Comput Sci Eng 5:64–69CrossRefGoogle Scholar
  34. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  35. Hukushima K, Nemoto K (1996) Exchange Monte Carlo method and applications to spin glass simulations. J Phys Soc (Japan) 65:1604–1608CrossRefGoogle Scholar
  36. Kirkpatrick S, Gelatt CP, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680PubMedCrossRefGoogle Scholar
  37. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic level accuracy. Science 302:1364–1368PubMedCrossRefGoogle Scholar
  38. Kumar S, Payne PW, Vásquez M (1996) Method for free-energy calculations using iterative techniques. J Comp Chem 17:1269–1275CrossRefGoogle Scholar
  39. Kwak W, Hansmann UHE (2005) Efficient sampling of protein structures by model hopping. Phys Rev Lett 95:138102PubMedCrossRefGoogle Scholar
  40. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566PubMedCrossRefGoogle Scholar
  41. Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615PubMedCrossRefGoogle Scholar
  42. Lyubartsev AP, Martinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992) New approach to Monte Carlo calculations of the free energy: method of expanded ensembles. J Chem Phys 96:1776–1783CrossRefGoogle Scholar
  43. Marinari E, Parisi G (1992) Simulated tempering: a new Monte Carlo scheme. Europhys Lett 19:451–458CrossRefGoogle Scholar
  44. Meinke JH, Hansmann UHE (2009) Thermodynamics and free-energy driven folding of the 67-residue protein GSα W – A large-scale Monte Carlo study. J Comp Chem 30:1642–1648CrossRefGoogle Scholar
  45. Minor DL Jr, Kim PS (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380:730–734PubMedCrossRefGoogle Scholar
  46. Mohanty S, Meinke JH, Zimmermann O, Hansmann UHE (2008) Simulation of Top7-CFr: a transient helix extension guides folding. Proc Natl Acad Sci USA 105:8004–8007PubMedCrossRefGoogle Scholar
  47. Mohanty S, Hansmann UHE (2008) Caching of a Chameleon segment facilitates folding of a protein with end-to-end β-sheet. J Phys Chem B 112:15134PubMedCrossRefGoogle Scholar
  48. Nadler W, Hansmann UHE (2007) Generalized ensemble and tempering simulations: a unified view. Phys Rev E 75:026109CrossRefGoogle Scholar
  49. Nadler W, Hansmann UHE (2008) Optimized explicit-solvent replica-exchange molecular dynamics from scratch. J Phys Chem B 112:10386PubMedCrossRefGoogle Scholar
  50. Nadler W, Meinke JA, Hansmann UHE (2008) Folding proteins by first-passage-times optimized replica exchange. Phys Rev E 78:061905CrossRefGoogle Scholar
  51. Schug A, Wenzel W, Hansmann UHE (2005) Energy landscape paving simulations of the trp-cage protein. J Chem Phys 122:194711PubMedCrossRefGoogle Scholar
  52. Trebst S, Troyer M, Hansmann UHE (2006) Optimized parallel tempering simulations of proteins. J Chem Phys 124:174903PubMedCrossRefGoogle Scholar
  53. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comp Phys 23:187–199CrossRefGoogle Scholar
  54. Wang FG, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050–2053PubMedCrossRefGoogle Scholar
  55. Wenzel W, Hamacher K (1999) Stochastic tunneling approach for global minimization of complex potential energy landscapes. Phys Rev Lett 82:3003CrossRefGoogle Scholar
  56. Wu MG, Deem MW (1999) Analytical rebridging Monte Carlo: application to cis/trans isomerization in proline-containing cyclic peptides. J Chem Phys 111:6625–6632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations