Portable XRF of Archaeological Artifacts: Current Research, Potentials and Limitations

  • Ioannis LiritzisEmail author
  • Nikolaos Zacharias


Portable X-ray fluorescence (PXRF) serves as an effective, rapid and non-destructive, method for determining the elemental composition of natural and man-made materials, such as ceramic, glaze, glass, obsidian, pigments, paint, and metal artifacts; based on the analysis, the determination of their origin, technological and production issues, comparative studies, and more knowledge in the field of cultural heritage can be aimed at. The wavelengths of the released energy, known as fluorescent X-rays, are detected and measured by spectrograph in the energy dispersive and wavelength manner of detection. Since only the surface of an object is studied, in dimensions that typically range within some millimeters, care needs to be taken that corrosion and decay do not affect the analysis. A world survey of the major applications of PXRF in the analysis of various cultural material types is reported, and the available PXRF setups are described. A review of the results of obsidian characterization and clustering is included, and the advantages, reliability, and limitations are discussed, with particular emphasis on the calibration procedures.


Provenance Study Chrome Yellow Pigment Identification Obsidian Source Archaeological Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Prof G. Poupeau (Bordeaux) for the constructive correspondence and Dr. A. Vafiadou for her assistance during the preparation of the two biplots presented.


  1. Acquafredda, P., Andriani, S., Lorenzoni, S., Zanettin, E., (1999) Chemical characterization of obsidians from different Mediterranean sources by nondestructive SEMEDS analytical method. Journal of Archaeological Sciences 26, 315–325.CrossRefGoogle Scholar
  2. Agnoli, A., Calliari, I., Mazzocchin, G.-A., (2007) Use of different spectroscopic techniques in the analysis of roman age wall paintings. Annali di Chimica 97 (1–2), 1–7.CrossRefGoogle Scholar
  3. AlKofahi, M.M., AlTarawneh, K.F., (2000) Analysis of Ayyubid and Mamluk dirhams using X ray fluorescence spectrometry. X-Ray Spectrometry 29, 39–47.CrossRefGoogle Scholar
  4. Andrikopoulos, K.S., Daniilia, S., Roussel, B., Janssens, K., (2006) In vitro validation of a mobile Raman-XRF microanalytical instrument’s capabilities on the diagnosis of Byzantine icons. Journal of Raman Spectroscopy 37 (10), 1026–1034.CrossRefGoogle Scholar
  5. Appoloni, C.R., Blonski, M.S., Parreira, P.S., Souza, L.A.C., (2007) Pigments elementary chemical composition study of a gainsborough attributed painting employing a portable Xrays fluorescence system. AIP Conference Proceedings 884, 459–464.CrossRefGoogle Scholar
  6. Baxter, M.J., (1994) Exploratory multivariate analysis in archaeology. Edinburgh University Press, Scotland.Google Scholar
  7. BellotGurlet, L., Le Bourdonnec, F.X., Poupeau, G., Dubernet, S., Bos, M., Vrielink, J.A.M., van der Linden, W.E., (2000) Nondestructive analysis of small irregularly shaped homogenous samples by Xray fluorescence spectrometry. Analytica Chimica Acta 412, 203–211.CrossRefGoogle Scholar
  8. BellotGurlet, L., Dorighel, O., Poupeau, G., Keller, F., Scorzelli, R.B., (2002) First characterization of obsidian from Colombian and Ecuadorian sources using ICPAES and ICPMS. Proceedings of the 31st International Symposium on Archaeometry, Jerem, E. and Biro, T. (eds.), Archaeopress Archaeolingua, BAR International Series 1043 (II), 678–684.Google Scholar
  9. BellotGurlet, L., Dorighel, O., Poupeau, G., (2008) Obsidian provenance studies in Colombia and Ecuador: obsidian sources revisited. Journal of Archaeological Science 35 (2), 272–289.CrossRefGoogle Scholar
  10. Bos, M., Vrielink, J.A.M., Van der Linden, W.E., (2000) Nondestructive analysis of small irregularly shaped homogeneous samples by X ray fluorescence spectrometry. Analytica Chimica Acta 412, 203–211.CrossRefGoogle Scholar
  11. Buxeda i Carrigos, J., Jones, R.E., Kilikoglou, V., Levi, S.T., Maniatis, Y., Mitchell, J., Vagretti, L., Wardle, K.A., Andrews, S., (2003) Technology transfer at the periphery of the Mycenaean World: the cases of Mycenaen pottery found in Central Macedonia (Greece) and the plain of Sybaris (Italy). Archaeometry 45 (2), 263–284.CrossRefGoogle Scholar
  12. Capitan - Vallvey, L.F., Manzano, E., Medina - Florez, V.J., (1994) A study of the materials in the mural paintings at the “Corral del Carbon” in Granada, Spain. Studies in Conservation 39 (2), 87–99.CrossRefGoogle Scholar
  13. Carter, T., Poupeau, G., Bressy, C., Pearce, N., (2006) A new programme of obsidian characterization at Catalhoyuk, Turkey. Journal of Archaeological Sciences 33 (7), 893–909.CrossRefGoogle Scholar
  14. Cesareo, R., Gigante, G.E., Iwanczyk, J.S., Dabrowski, A., (1992) Use of a mercury iodide detector for Xray fluorescence analysis in archaeometry. Nuclear Instruments and Methods in Physics Research A 322, 583–590.CrossRefGoogle Scholar
  15. Cesareo, R., Gigante, G.E., Canegallo, P., Castellano, A., Iwanczyk, J.S., Dabrowski, A., (1996) Applications of noncryogenic portable EDXRF systems in archaeometry. Nuclear Instruments and Methods 380, 440–445.CrossRefGoogle Scholar
  16. Cesareo, R., Gigante, G.E., Castellano, A., (1999) Thermoelectrically cooled semiconductor detectors for nondestructive analysis of works of art by means of energy dispersive Xray fluorescence. Nuclear Instruments and Methods A 428, 171–181.CrossRefGoogle Scholar
  17. Cesareo, R., Cappio Borlino, C., Stara, G., Brunetti, A., Castellano, A., Buccolieri, G., Marabelli, M., Giovagnoli, A.M., Gorghinian, A., Gigante, G.E., (2000) A portable EDXRF apparatus for the analysis of sulphur and chlorine in frescoes and stony monuments. Trace Microprobe Technology 18 (1), 23–33.Google Scholar
  18. Cojocaru, V., Constantinescu, B., Stefanescu, I., Petolescu, C.M., (2000) EDXRF and PAA analyses of Dacian gold coins of “Koson” type. Journal of Radioanalytical and Nuclear Chemistry 246 (1), 185–190.CrossRefGoogle Scholar
  19. Craig, N., Speakman, R.J., PopelkaFilcoff, R.S., Glascock, M.D., Robertson, J.D., Shackley, M.S., Aldenderfer, M.S., (2007) Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú. Journal of Archaeological Science 34 (12), 2012–2024.CrossRefGoogle Scholar
  20. Davis, M.K., Jackson, T.L., Shackley, M.S., Teague, T., Hampel, J.H., (1998) Factors affecting the energy dispersive X ray fluorescence (EDXRF) analysis of archaeological obsidian. In Shackley, M.S. (ed.), Archaeological Obsidian studies, method and theory, Plenum Press, New York, 159–180.Google Scholar
  21. De Fransesco, A.M., Crisci, G.M., Bocci, M., (2007) Non destructive analytical method using XRF for determination of provenance of archaeological obsidian from the Mediterranean area: a comparison with traditional XRF method. Archaeometry 50 (2), 337–350.CrossRefGoogle Scholar
  22. Desnica, V., Škarić, K., JembrihSimbuerger, D., Fazinić, S., Jakšić, M., Mudronja, D., Pavličić,M., Peranić, I., Schreiner, M., (2008). Portable XRF as a valuable device for preliminary in situ pigment investigation of wooden inventory in the Trski Vrh Church in Croatia. Applied Physics A: Materials Science and Processing 92 (1), 19–23.CrossRefGoogle Scholar
  23. Ebel, H., (1999) Xray tube spectra. X-Ray Spectrometry 28, 255–266.CrossRefGoogle Scholar
  24. Ferretti, M., Moioli, P., (1998) The use of portable XRF systems for preliminary compositional surveys on large bronze objects. A critical review after some years’ experience. In Proceedings of the International Conference Metal 98, Draguignan 2729 May 1998, Mourey, W. and Robiola, L. (eds.), 39–44.Google Scholar
  25. Ferretti, M., Guidi, G., Moioli, P., Scafe R., Seccaroni C., (1991) The presence of antimony in some grey colours of three paintings by Correggio. Studies in Conservation 36, 235–239.CrossRefGoogle Scholar
  26. Ferretti, M., Miazzo, L., Moioli, P., (1997) The application of a nondestructive XRF method to identify different alloys in the bronze statue of the Capitoline Horse. Studies in Conservation 42, 241–246.CrossRefGoogle Scholar
  27. Gauvin, R., Lifshin, E., (2000) Simulation of X ray emission from rough surfaces. Mikrochimica Acta 132, 201–204.Google Scholar
  28. Gopher, Z., (1983) Physical studies of archaeological materials. Report Progress on Physics 46, 1193–1234.CrossRefGoogle Scholar
  29. Guerra, M.F., (2008). An overview on the ancient goldsmith’s skill and the circulation of gold in the past: the role of Xray based techniques. X-Ray Spectrometry 37 (4), 317–327.CrossRefGoogle Scholar
  30. Hall, E.T., Schweizer, F., Toller, P.A., (1973) Xray fluorescence analysis of museum objects: a new instrument. Archaeometry 15, 53–78.CrossRefGoogle Scholar
  31. Haruyama, Y., Saito, M., Muneda, T., Mitani, M., Yamamoto, R., Yoshida, K., (1999).Comparison between PIXE and XRF for old Japanese copper coin analysis. International Journal of PIXE 9, 181–188.CrossRefGoogle Scholar
  32. Kallithrakas-Kontos, N., Katsanos, A.A., Touratsoglou, J., (2000) Trace element analysis of Alexander the great’s silver tetradrachms minted in Macedonia. Nuclear Instruments and Methods in Physics Research B 171 (3), 342–349.CrossRefGoogle Scholar
  33. Karydas, A.G., (2007) Application of a portable XRF spectrometer for the noninvasive analysis of museum metal artefacts. Annali di Chimica 97 (7), 419–432.CrossRefGoogle Scholar
  34. Karydas, A.G., Kotzamani, D., Bernard, R., Barrandon, J.W., Zarkadas, Ch., (2004) A compositional study of a museum jewellery collection (7th - 1st c. BC) by means of a portable XRF spectrometer. Nucl. Instr. Meth. in Physics Res. B 226, 15–28.Google Scholar
  35. Kitov, B.I., (2000) Calculation features of the fundamental parameter method in XRF. X-Ray Spectrometry 29, 285–290.CrossRefGoogle Scholar
  36. Knoll, G.F., (2000) Radiation detectors for Xray and gammaray spectroscopy. Journal of Radioanalytical and Nuclear Chemistry 243 (1), 125–131.CrossRefGoogle Scholar
  37. Kondrashov, V.S., Rothenberg, S.J., SajoBohus, L., Greaves, E.D., Liendo, J.A., (2000) Increasing reliability in gamma and X-ray spectral analysis: least moduli approach. Nuclear Instruments and Methods in Physics Research A 446 (3), 560–568.CrossRefGoogle Scholar
  38. Kunicki-Goldfinger, J., Kierzek, J., Kasprzak, A., Malozewska - Bucko, B., (2000) A study of eighteenth century glass vessels from central Europe by xray fluorescence analysis. X-Ray Spectrometry 29, 310–316.CrossRefGoogle Scholar
  39. Langhoff, N., Arkadiev, V.A., Bjeoumikhov, A.A., Gorny, H.E., Schmalz, J., Wedell, R., (1999) Concepts for a portable X-ray spectrometer for nondestructive analysis of works of art. Berliner Beiträge zur Archäometrie 16, 155–161.Google Scholar
  40. Leslie, C., Matthew, G., Moriarty, D., Speakman, R.J., Glascock, M.D., (2007) Feasibility of field portable XRF to identify obsidian sources in Central Petén, Guatemala. In Archaeological chemistry: analytical methods and archaeological interpretation, Glascock, M.D., Speakman, R.J.,Popelka Filcoff, R.S. (eds.), 506–521. ACS Publication Series 968. American Chemical Society, Washington, DC.Google Scholar
  41. Leung, P.L., Daze, S., Stokes, M.J., (2000a) EDXRF surface shape correction for thick sample measurement using an outer mark membrane. X-Ray Spectrometry 29 (5), 360–364.CrossRefGoogle Scholar
  42. Leung, P.L., Peng, Z.C., Stokes, M.J., Li, M.T.W., (2000b) EDXRF studies of porcelains (8001600 A.D.) from Fujian, China with chemical proxies and principal component analysis. X-Ray Spectrometry 29(5), 253–259.CrossRefGoogle Scholar
  43. Linke, R., Schreiner, M., (2000) Energy dispersive Xray fluorescence analysis and Xray microanalysis of medieval silver coins. Mikrochimica Acta 133, 165–170.CrossRefGoogle Scholar
  44. Liritzis, I., (2005) Ulucak (Smyrna, Turkey): chemical analysis with clustering of ceramics and soils and obsidian hydration dating. Mediterranean Archaeology and Archaeometry 5(3), Special Issue, 33–45.Google Scholar
  45. Liritzis, I., (2007) Assessment of Aegean obsidian sources by a portable EDXRF analyzer (grouping, provenance and accuracy). In Proceedings of the 4th Symposium of the Hellenic Society for Archaeometry, Facorellis, Y., Zacharias, N., Polikreti, K. (eds.), Archaeopress, BAR International Series 1746, 399–406.Google Scholar
  46. Liritzis, I., Polychroniadou, E., (2007) Optical and analytical techniques applied to the Amfissa Cathedral mural paintings made by the Greek artist Spyros Papaloukas (1892–1957). Revue d’ Archaeometrie (Archaeosciences) 31, 97–112.Google Scholar
  47. Liritzis, I., Drakonaki, S., Vafiadou, A., Sampson, A., Boutsika, T., (2002) Destructive and nondestructive analysis of ceramics, artefacts and sediments of Neolithic Ftelia (Mykonos) by portable EDXRF spectrometer: first results. In Sampson, A. (ed.), The Neolithic settlement at Ftelia, Mykonos, University of the Aegean, Department of Mediterranean Studies, Rhodes, 251–272.Google Scholar
  48. Liritzis, I., Sideris, C., Vafiadou, A., Mitsis, J., (2007) Mineralogical petrological and radioactivity aspects of some building material from Egyptian Old Kingdom monuments. Journal of Cultural Heritage 9, 1–13.Google Scholar
  49. Longoni, A., Fiorini, C., Leutenegger, P., Sciuti, S., Fonterotta, G., Strόder, L., Lechner, P., (1998) A portable XRF spectrometer for nondestructive analyses in archaeometry. Nuclear Instruments and Methods A 409, 407–409.CrossRefGoogle Scholar
  50. Lugliè, C., Le Bourdonnec, F.X., Poupeau, G., Bohn, M., Meloni, S., Oddone M., Tanda, G., (2006) A map of the Monte Arci (Sardinia Island, Western Mediterranean) obsidian primary to secondary sources. Implications for Neolithic provenance studies. C R Paleo 5, 995–1003.CrossRefGoogle Scholar
  51. Lugliè, C., Le Bourdonnec, F.X., Poupeau, G., Atzeni, E., Dubernet, S., Moretto P., Serani, L., (2007). Early Neolithic obsidians in Sardinia (Western Mediterranean): the Su Carroppu case. Journal of Archaeological Science 34, 428–439.CrossRefGoogle Scholar
  52. Mantzourani, H., Liritzis, I., (2006) Chemical analysis of pottery samples from Kantou Kouphovounos and Sotira Tepes (Cyprus): a comparative approach. Reports of the Department of Antiquities, Cyprus, 63–76.Google Scholar
  53. Papadopoulou, D.N., Zachariadis, G.A., Anthemidis, A.N., Tsirliganis, N.C., Stratis, J.A., (2006). Development and optimisation of a portable microXRF method for in situ multielement analysis of ancient ceramics. Talanta 68 (5), 1692–1699.CrossRefGoogle Scholar
  54. Papadopoulou, D., Sakalis, A., Merousis, N., Tsirliganis, N.C., (2007). Study of decorated archaeological ceramics by micro Xray fluorescence spectroscopy. Nuclear Instruments and Methods in Physics Research A 580 (1), 743–746.CrossRefGoogle Scholar
  55. Papageorgiou, I., Liritzis, I., (2007) Multivariate mixture of normals with unknown number of components. An application to cluster Neolithic ceramics from the Aegean and Asia Minor. Archaeometry 49 (4), 795–813.CrossRefGoogle Scholar
  56. Pappalardo, G., Karydas, A.G., La Rosa, V., Militello, P., Pappalardo, L., Rizzo, F., Romana, F.P., (2003) Provenance of obsidian artefacts from different archaeological layers of Phaistos and Hagia Triada. Creta Antica 4, 287–300.Google Scholar
  57. Pappalardo, L., Karydas, A.G., Kotzamani, N., Pappalardo, G., Romano, F.P., Zarkadas, Ch., (2005). Complementary use of PIXE-alpha and XRF portable systems for the nondestructive and in situ characterization of gemstones in museums. Nuclear Instruments and Methods in Physics Research B 239 (12), 114–121.CrossRefGoogle Scholar
  58. Pérez-Arantegui, J., Resano, M., García - Ruiz, E., Vanhaecke, F., Roldán, C., Ferrero, J., Coll, J., (2008). Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation inductively coupled plasma mass spectrometry and portable Xray fluorescence spectrometry. Talanta 74 (5), 1271–1280.CrossRefGoogle Scholar
  59. Pillay, A.E., (2001) Analysis of archaeological artefacts: PIXE, XRF or ICPMS?. Journal of Radioanalytical and Nuclear Chemistry 247 (3), 593–595.CrossRefGoogle Scholar
  60. Pollard, A. M., (1986) Multivariate methods of data analysi. In Greek and Cypriot pottery: a review of scientific studies, (ed. R. E. Jones). Fitch Lab. Occas. Pap., 1, Brit. Sch. Athens, 56–83, Athens.Google Scholar
  61. Potts, J.P., West, M., (eds), (2008). Portable Xray fluorescence spectrometry: capabilities for in situ analysis. The Royal Society of Chemistry, Cambridge.Google Scholar
  62. Potts, J.P., Webb, P.C., Williams - Thorpe, O., (1995) Analysis of silicate rocks using fieldportable Xray fluorescence instrumentation incorporating a mercury (II) iodide detector: a preliminary assessment of analytical performance. Analyst 120, 1273–1278.CrossRefGoogle Scholar
  63. Potts, J.P., Williams-Thorpe, O., Webb, C.P., (1997) The bulk analysis of silicate rocks by portable XRay fluorescence: Effect of sample mineralogy in relation to the size of the excited volume, Geostandards Newsletter. The Journal of Geostandards and Geoanalysis 21 (1), 29–41.CrossRefGoogle Scholar
  64. Potts, J.P., Ellis, A.T., Kregsamer, P., Marshall, J., Streli, C., West, M., Wobrauschek, P., (2001) Atomic spectrometry update: Xray fluorescence spectrometry (The Royal Society of Chemistry). Journal of Analytical and Atomic Spectrometry 16, 1217–1237.CrossRefGoogle Scholar
  65. Rebocho, J., Carvalho, M.L., Marques, A.F., Ferreira, F.R., Chettle, D.R., (2006) Lead postmortem intake in human bones of ancient populations by 109Cd based Xray fluorescence and EDXRF. Talanta 70 (5), 957–961.CrossRefGoogle Scholar
  66. Romano, F.P., Pappalardo, G., Pappalardo, L., Garraffo, S., Gigli, R., Pautasso, A., (2006) Quantitative nondestructive determination of trace elements in archaeological pottery using a portable beam stability controlled XRF spectrometer. X-Ray Spectrometry 35 (1), 17.CrossRefGoogle Scholar
  67. Roth, B.J., (2000) Obsidian source characterization and hunter gatherer mobility: an example from the Tuscon basin. Journal of Archaeological Science 27, 305–314.CrossRefGoogle Scholar
  68. Rotondi, G., Urbani, G., (1972) Non destructive analysis of chemical elements in paintings and enamels. Archaeometry 14, 65–78.CrossRefGoogle Scholar
  69. Sandor, Z., Tolgyesi, S., Gresits, I., Kaplan - Juhasz, M., (2000) Qualitative and quantitative analysis of medieval silver coins by energy dispersive Xray fluorescence method. Journal of Radioanalytical Nuclear Chemistry 246 (2), 385–389.CrossRefGoogle Scholar
  70. Schwedt, A., Mommsen, H., Zacharias, N., (2004) Postdepositional elemental alterations in pottery: neutron activation analyses of surface and core samples. Archaeometry 46, 85–101.CrossRefGoogle Scholar
  71. Shackley, M.S., (2005) Obsidian. Geology and archaeology in the North American Southwest. University of Arizona Press, Tucson.Google Scholar
  72. Sokaras, D., Karydas, A.G., Oikonomou, A., Zacharias, N., Beltsios, K., Kantarelou, V., (2009) Combined elemental analysis of ancient glass beads by means of ion-beam, portable XRF and EPMA techniques, Analytical Bioanalytical Chemistry 395, 199–2209.CrossRefGoogle Scholar
  73. Spoto, G., Torrisi, A., Contino, A., (2000) Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chemical Society Reviews 29 (6), 429.CrossRefGoogle Scholar
  74. Tite, M.S., (2008) Ceramic production, provenance and use: a review. Archaeometry 50, 216–231.CrossRefGoogle Scholar
  75. Tykot, R., (2001) Chemical fingerprint and source tracing of obsidian: the central Mediterranean trade in black gold. Accounts of Chemical Research 35, 618–627.CrossRefGoogle Scholar
  76. Uda, M., Sassa, S., Taniguchi, K., Nomura, S., Yoshimura, S., Kondo, J., Iskander, N., Zaghloul, B., (2000) Touchfree in situ investigation of ancient Egyptian pigments. Naturwissenschaften 87 (6), 260–263CrossRefGoogle Scholar
  77. Uda, M., Demortier, G., Nakai, I., (eds.), (2005) X rays in archaeology. The Netherlands, Springer.Google Scholar
  78. Vandenabeele, P., Moens, L., Edwards, H.G.M., Dams, R., (2000a) Raman spectroscopic database of Azopigments and application to modern art studies. Journal of Raman Spectroscopy 31 (6), 509–517.CrossRefGoogle Scholar
  79. Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De Reu, M., Van Hooydonk, G., (2000b) Analysis with microRaman spectroscopy of natural organic binding media and varnishes used in art. Analytical Chimica Acta 407, 261–274.CrossRefGoogle Scholar
  80. Wegrzynek, D., (2005) (Trans) portable XRF spectrometer with polycapillary optics and vacuum chamber. XRF Newsletter, IAEA, Issue 10, December.Google Scholar
  81. Williams-Thorpe, O., (1995) Obsidian in the Mediterranean and Near East: a provenancing success story. Archaeometry 37, 217–248.CrossRefGoogle Scholar
  82. Williams-Thorpe O., Potts, P.J., Webb, P.C., (1999) Field portable non destructive analysis of lithic archaeological samples by X ray fluorescence instrumentation using a mercury iodide detector: comparison with wavelength – dispersive XRF and a case study in British stone Axe provenancing. Journal of Archaeological Science 26 (2), 215–237.CrossRefGoogle Scholar
  83. Willis, J.P., Lachance, G.R., (2000) Resolving apparent differences in mathematical expressions relating intensity to concentration in Xray fluorescence spectrometry. The Rigaku Journal 17 (1), 23–33.Google Scholar
  84. Willis, J.P., Lachance, G.R., (2002) Debate on some algorithms relating concentration to intensity in XRF spectrometry. The Rigaku Journal 19 (1), 25–34.Google Scholar
  85. Wobrauschek, P., Halmetschlager, G., Zamini, S., Jokubonis, C., Trnka, G., Karwowski, M., (2000) Energy dispersive xray fluorescence analysis of Celtic glasses. X-Ray Spectrometry 29, 25–33.CrossRefGoogle Scholar
  86. Wu, J., Leung, P.L., Li, J.Z., Stokes, M.J., Li, M.T.W., (2000) EDXRF studies on blue and white Chinese Jingdezhen porcelain samples from the Yuan, Ming and Qing dynasties. X-Ray Spectrometry 29, 239–244.CrossRefGoogle Scholar
  87. Zacharias, N., Beltsios, K., Oikonomou, Ar., Karydas, A.G., Bassiakos, Y., (2008) Thermally and optically stimulated luminescence properties of an archaeological glass collection from Thebes, Greece. Journal of Non Crystalline Solids 354, 761–767.CrossRefGoogle Scholar
  88. Zacharias, N., Bassiakos, Y., Hayden, B., Theodorakopoulou, K., Michael, C.T., (2009) Luminescence dating of deltaic deposits from eastern Crete, Greece: geoarchaeological implications. Geomorphology 109 (1–2), 46–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mediterranean Studies, Laboratory of ArchaeometryUniversity of the AegeanRhodesGreece

Personalised recommendations