Comparing Stone Tool Resharpening Trajectories with the Aid of Elliptical Fourier Analysis

Chapter

Abstract

Resharpening has long played a confusing role in the history of research on lithic variability. In this chapter, I argue that, far from confounding issues of variability, resharpening can be used as a classificatory principle because it reflects human technical choices related to repeated uses of a tool. The advantage that resharpening offers is that of a mathematically suitable study object, through the investigation of shape change along the continuum of size reduction. Building upon a rich history of research in both biology and prehistoric archaeology, I present a variant of a new method for comparing resharpening trajectories, using elliptical Fourier analysis (EFA) and principal components analysis to compare the slopes of allometric regressions. The theoretical presentation is followed by a worked example using bifacial tools from two European Middle Paleolithic sites: Pech de l’Azé I (France) and Buhlen III (Germany).

References

  1. Ahler, S., 1971. Projectile Point Form and Function at Rodgers Shelter, Missouri. Missouri Archaeological Society Research Series no. 8, University of Missouri, Columbia.Google Scholar
  2. Alimen, H. and Vignal, A., 1952. Etude statistique de biface acheuleens. Essai d’archeometrie. Bulletin de la Société Préhistorique Française 49: 56–72.CrossRefGoogle Scholar
  3. Andrefsky, W., 2006. Experimental and archaeological verification of an index of retouch for hafted bifaces. American antiquity 71: 743–757.CrossRefGoogle Scholar
  4. Ashton, N. and White, M., 2003. Bifaces and raw materials: flexible flaking in the British Early Paleolithic. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 109–124. University Museum Monographs. University of Pennsylvania Press, Philadelphia.Google Scholar
  5. Blades, B.S., 1999. Aurignacian lithic economy and early modern human mobility: new perspectives from classic sites in the Vezere valley of France. Journal of Human Evolution 37: 91–120.CrossRefGoogle Scholar
  6. Boëda, E., 1995. Steinartefakt-Produktionssequenzen im Micoquien der Kulna-Höhle. Quartär 45: 75–98.Google Scholar
  7. Bookstein, F.L., 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.CrossRefGoogle Scholar
  8. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.Google Scholar
  9. Bookstein, F.L., 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1: 225–243.CrossRefGoogle Scholar
  10. Bordes, F., 1954. Les gisements du Pech de l’Azé (Dordogne). I. Le Moustérien de tradition acheuléenne (avec une note paléontologique de J. Bouchoud). L’Anthropologie 58: 401–432.Google Scholar
  11. Bordes, F., 1979, Typologie du Paléolithique Ancien et Moyen. Cahiers du Quaternaire 1. C.N.R.S., Bordeaux.Google Scholar
  12. Bosinski, G., 1967. Die mittelpaläolithischen Funde im westlichen Mitteleuropa. Fundamenta Böhlau-Verlag, Köln and Graz.Google Scholar
  13. Brooks, A.S., Nevell, L., Yellen, J.E. and Hartman, G., 2006. Projectile technologies of the African MSA: implications for modern human origins. In Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age, edited by E. Hovers and S.L. Kuhn, pp. 233–255. Springer, Netherlands.CrossRefGoogle Scholar
  14. Buchanan, B., 2006. An analysis of Folsom projectile point resharpening using quantitative comparisons of form and allometry. Journal of Archaeological Science 33: 185–199.CrossRefGoogle Scholar
  15. Cahen, D., 1975. Le site archéologique de La Kamoa (Région du Shaba, République du Zaire), de l’Age de la Pierre Ancienne à l’Age du Fer. Annales, Serie in 8c, Sciences Humaines 84. Musée Royal de l’Afrique Centrale, Tervuren.Google Scholar
  16. Cardini, A. and Slice, D.E., 2004. Mandibular shape in the genus Marmota (Rodentia, Sciuridae): a preliminary analysis using outlines. Italian Journal of Zoology 71: 17–25.CrossRefGoogle Scholar
  17. Clarkson, C., 2002. An index of invasiveness for the measurement of unifacial and bifacial retouch: a theoretical, experimental and archaeological verification. Journal of Archaeological Science 29: 65–75.CrossRefGoogle Scholar
  18. Claude, J., 2008. Morphometrics with R. Use R. Springer, New York.Google Scholar
  19. Cooper, H.M., 1954. Material culture of Australian Aborigines Part 1. Progressive modification of a stone artefact. Records of the Australian Museum 11: 91–97.Google Scholar
  20. Crompton, R.H. and Gowlett, J.A.J., 1993. Allometry and multidimensional form in Acheulean bifaces from Kilombe, Kenya. Journal of Human Evolution 25: 175–199.CrossRefGoogle Scholar
  21. Daegling, D.J. and Jungers, W.L., 2000. Elliptical Fourier analysis of symphyseal shape in great ape mandibles. Journal of Human Evolution 39: 107–122.CrossRefGoogle Scholar
  22. Dibble, H.L., 1984. Interpreting typological variation of Middle Paleolithic scrapers: function, style, or sequence of reduction? Journal of Field Archaeology 11: 431–436.CrossRefGoogle Scholar
  23. Dibble, H.L., 1987. The interpretation of Middle Palaeolithic scraper morphology. American Antiquity 52: 109–117.CrossRefGoogle Scholar
  24. Dibble, H.L., 1995. Middle Paleolithic scraper reduction: background, clarification, and review of evidence to data. Journal of Archaeological Method and Theory 2: 299–368.CrossRefGoogle Scholar
  25. Edgar, R.K., 2007. CartesianDiatom-EFA: software for Elliptical Fourier Analysis. Version 1.1. www.diatom.org.
  26. Ehrlich, R. and Weinberg, B., 1970. An exact method for characterization of grain shape. Journal of Sedimentary Petrology 40: 205–212.Google Scholar
  27. Eren, M.I., Domínguez-Rodrigo, M., Kuhn, S.L., Adler, D.S., Le, I. and Bar-Yosef, O., 2005. Defining and measuring reduction in unifacial stone tools. Journal of Archaeological Science 32: 1190–1201.CrossRefGoogle Scholar
  28. Ferson, S., Rohlf, F.J., and Koehn, R.K., 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34: 59–68.CrossRefGoogle Scholar
  29. Flenniken, J.J. and Raymond, A.W., 1986. Morphological projectile point typology: replication, experimentation, and technological analysis. American Antiquity 51: 603–614.CrossRefGoogle Scholar
  30. Friess, M. and Baylac, M., 2003. Exploring artificial cranial deformation using elliptic Fourier analysis of Procrustes aligned outlines. American Journal of Physical Anthropology 122: 11–22.CrossRefGoogle Scholar
  31. Frison, G.C., 1968. A functional analysis of certain chipped stone tools. American Antiquity 33: 149–155.CrossRefGoogle Scholar
  32. Gero, J.M. and Mazzullo, J., 1984. Analysis of artifact shape using Fourier series in closed form. Journal of Field Archaeology 11: 315–322.Google Scholar
  33. Good, P.I., 2005. Introduction to Statistics Through Resampling Methods and R/S-PLUS. Wiley-Interscience, New York.CrossRefGoogle Scholar
  34. Goodall, C., 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B 53: 285–339.Google Scholar
  35. Granlund, G.H., 1972. Fourier preprocessing for hand print character recognition. IEEE Trans Comput C-21: 195–201.CrossRefGoogle Scholar
  36. Gunz, P., Mitteroecker, P. and Bookstein, F.L., 2005. Semilandmarks in three dimensions. In Modern Morphometrics in Physical Anthropology, edited by D.E. Slice, pp. 73–98. Springer-Verlag, New York.CrossRefGoogle Scholar
  37. Hayden, B., 1989. From chopper to celt: the evolution of resharpening techniques. In Time, Energy and Stone Tools, edited by R. Torrence, pp. 7–16. Cambridge University Press, Cambridge.Google Scholar
  38. Hiscock, P., 1996. Transformations of Upper Palaeolithic implements in the Dabba industry from Haua Fteah (Libya). Antiquity 70: 657–664.Google Scholar
  39. Hiscock, P. and Attenbrow, V., 2003. Early Australian implement variation: a reduction model. Journal of Archaeological Science 30: 239–249.CrossRefGoogle Scholar
  40. Hoffman, C., 1985. Projectile point maintenance and typology: assessment with factor analysis and canonical correlation. In For Concordance in Archaeological Analysis: Bridging Data Structure, Quantitative Technique, and Theory, edited by C. Carr, pp. 566–612. Wesport Press, Kansas City, MO.Google Scholar
  41. Holmes, W.H., 1891. Manufacture of stone arrow points. American Anthropologist 4: 49–58.Google Scholar
  42. Holmes, W.H., 1892. Modern quarry refuse and the Paleolithic theory. Science 20: 295–297.CrossRefGoogle Scholar
  43. Iovita, R.P., 2009. Ontogenetic scaling and lithic systematics: method and application. Journal of Archaeological Science 36: 1447–1457.CrossRefGoogle Scholar
  44. Isaac, G.L., 1977. Olorgesailie. Archaeological Studies of a Middle Pleistocene Lake Basin in Kenya. University of Chicago Press, Chicago.Google Scholar
  45. Jelinek, A.J., 1991. Observations on reduction patterns and raw materials in some Middle Paleolithic industries in the Perigord. In Raw Material Economies Among Prehistoric Hunter-Gatherers, edited by A. Montet-White and S. Holen, pp. 7–32. University of Kansas Publication in Anthropology, 19. University of Kansas, Lawrence.Google Scholar
  46. Jolicoeur, P., 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.CrossRefGoogle Scholar
  47. Jöris, O., 2001. Der spätmittelpaläolithische Fundplatz Buhlen (Grabungen 1966-69). Stratigraphie, Steinartefakte und Fauna des Oberen Fundplatzes. Universitätsforsch. Prähist. Arch. 73. Bonn.Google Scholar
  48. Jöris, O., 2006. Bifacially Backed Knives (Keilmesser) in the Central European Middle Palaeolithic. In Axe-Age: Acheulian Tool-Making from Quarry to Discard, edited by N. Goren-Inbar and G. Sharon, pp. 287–310. Equinox, London; Oakville, CT.Google Scholar
  49. Kendall, D.G., 1984. Shape-manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16: 81–121.CrossRefGoogle Scholar
  50. Kuhl, F.P. and Giardina, C.R., 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258.CrossRefGoogle Scholar
  51. Kuhn, S.L., 1990. Geometric index of reduction for unifacial stone tools. Journal of Archaeological Science 17: 583–593.CrossRefGoogle Scholar
  52. Kuhn, S.L., 1991. “Unpacking” reduction: lithic raw material economy in the Mousterian of west-central Italy. Journal of Anthropological Archaeology 10: 76–106.CrossRefGoogle Scholar
  53. Lestrel, P.E., 1982. A Fourier analytic procedure to describe complex morphological shapes. Progress in Clinical and Biological Research 101: 393–409.Google Scholar
  54. Lestrel, P.E. and Brown, H.D., 1976. Fourier analysis of adolescent growth of the cranial vault: a longitudinal study. Human Biology 48: 517–528.Google Scholar
  55. Lycett, S.J., von Cramon-Taubadel, N. and Foley, R.A., 2006. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application. Journal of Archaeological Science 33: 847–861.CrossRefGoogle Scholar
  56. Maddux, S.D. and Franciscus, R.G., 2009. Allometric scaling of infraorbital surface topography in Homo. Journal of Human Evolution 56: 161–174.CrossRefGoogle Scholar
  57. Marchal, F., 2000. A new morphometric analysis of the hominid pelvic bone. Journal of Human Evolution 38: 347–365.CrossRefGoogle Scholar
  58. McBrearty, S. and Brooks, A.S., 2000. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. Journal of Human Evolution 39: 453–563.CrossRefGoogle Scholar
  59. McPherron, S.P., 1995. A re-examination of the British biface data. Lithics 16: 47–63.Google Scholar
  60. McPherron, S.P., 1999. Ovate and pointed handaxe assemblages: two points make a line. Préhistoire Européenne 14: 9–32.Google Scholar
  61. McPherron, S.P., 2000. Handaxes as a measure of the mental capabilities of early hominids. Journal of Archaeological Science 27: 655–663.CrossRefGoogle Scholar
  62. McPherron, S.P., 2003. Technological and typological variability in the bifaces from Tabun Cave, Israel. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 55–75. University Museum Monographs. University of Pennsylvania Museum of Archaeology and Anthropology Publications, Philadelphia.Google Scholar
  63. Mellars, P.A., 2002. Archaeology and the origins of modern humans: European and African perspectives. In The Speciation of Modern Homo sapiens, edited by T.J. Crow, pp. 31–48. Proceedings of the British Academy. The British Academy, London.Google Scholar
  64. Mellars, P.A. and Grün, R., 1991. A comparison of the Electron Spin Resonance and thermoluminescence dating methods: the results of ESR dating at Le Moustier (France). Cambridge Archaeological Journal 1: 269–276.CrossRefGoogle Scholar
  65. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. and Bookstein, F.L., 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46: 679–697.CrossRefGoogle Scholar
  66. Montet-White, A. 1973. Le Malpas Rockshelter: A Study of Late Paleolithic Technology in Its Environmental Setting. Publications in anthropology 4. University of Kansas, Lawrence.Google Scholar
  67. Monti, L., Baylac, M. and Lalanne-Cassou, B., 2001. Elliptic Fourier analysis of the form of genitalia in two Spodoptera species and their hybrids (Lepidoptera: Noctuidae). Biological Journal of the Linnean Society 72: 391–400.CrossRefGoogle Scholar
  68. Nowell, A., Park, K., Metaxas, D. and Park, J., 2003. Deformation modeling: a methodology for analyzing handaxe morphology and variability. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 193–208. University of Pennsylvania Museum of Archaeology and Anthropology Publications, Philadelphia.Google Scholar
  69. Penin, X., Berge, C. and Baylac, M., 2002. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional Procrustes analysis. American Journal of Physical Anthropology 118: 50–62.CrossRefGoogle Scholar
  70. RDevelopmentCoreTeam, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  71. Richter, J., 2004. Copies of flakes: operational sequences of foliate pieces from Buran-Kaya III level B1. In The Middle Paleolithic and Early Upper Paleolithic of Eastern Crimea, edited by V. Chabai, K. Monigal, and A.E. Marks, pp. 233–248. ERAUL, LiègeGoogle Scholar
  72. Roe, D.A., 1964. The British Lower and Middle Palaeolithic: some problems, methods of study, and preliminary results. Proceedings of the Prehistoric Society 30: 245–267.Google Scholar
  73. Roe, D.A., 1968. British Lower and Middle Palaeolithic handaxe groups. Proceedings of the Prehistoric Society 34: 1–82.Google Scholar
  74. Rohlf, F.J., 2008. tpsDig2. Version 2.12, http://life.bio.sunysb.edu/morph/morphmet/tpsdig2w32.exe.
  75. Rolland, N. and Dibble, H.L., 1990. A new synthesis of Middle Paleolithic assemblage variability. American Antiquity 55: 480–499.CrossRefGoogle Scholar
  76. Saragusti, I., Karasik, A., Sharon, I. and Smilansky, U., 2005. Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. Journal of Archaeological Science 23: 841–853.CrossRefGoogle Scholar
  77. Saragusti, I., Sharon, I., Katzenelson, O., Avnir, D., 1998. Quantitative analysis of the symmetry of artefacts: Lower Paleolithic handaxes. Journal of Archaeological Science 25: 817–825.CrossRefGoogle Scholar
  78. Sheets, H. D., Covino, K., Panasiewicz, J., Morris, S., 2006. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology 3: 15.CrossRefGoogle Scholar
  79. Shott, M.J., 1989. On tool-class use lives and the formation of archaeological assemblages. American Antiquity 54: 9–30.CrossRefGoogle Scholar
  80. Shott, M.J., 1995. How much is a scraper? Curation, use rates, and the formation of scraper assemblages. Lithic Technology 20: 53–72.Google Scholar
  81. Shott, M.J., 1996a. An exegesis of the curation concept. Journal of Anthropological Research 52: 259–280.Google Scholar
  82. Shott, M.J., 1996b. Stage versus continuum in the debris assemblage from production of a fluted biface. Lithic Technology 21: 6–22.Google Scholar
  83. Shott, M., 1997. Stones and shafts redux: the metric discrimination of chipped-stone dart and arrow points. American Antiquity 62: 86–101.CrossRefGoogle Scholar
  84. Shott, M. and Sillitoe, P., 2005. Use life and curation in New Guinea experimental used flakes. Journal of Archaeological Science 32: 653–663.CrossRefGoogle Scholar
  85. Shott, M.J. and Weedman, K.J., 2007. Measuring reduction in stone tools: an ethnoarchaeological study of Gamo hidescrapers from Ethiopia. Journal of Archaeological Science 34: 1016–1035.CrossRefGoogle Scholar
  86. Soressi, M., 2002. Le Moustérien de tradition acheuléenne du sud-ouest de la France. Discussion sur la signification du faciès à partir de l’étude comparée de quatre sites: Pech-de-l’Azé I, Le Moustier, La Rochette et la Grotte XVI. unpublished PhD dissertation, Université de Bordeaux I,Google Scholar
  87. White, M.J., 1998. On the significance of Acheulean biface variability in Southern Britain. Proceedings of the Prehistoric Society 66: 1–28.Google Scholar
  88. White, M.J. and Pettitt, P.B., 1995. Technology of early Palaeolithic Western Europe: an heuristic framework. Lithics 16: 27–40.Google Scholar
  89. Wynn, T. and Tierson, F., 1990. Regional comparison of the shapes of later Acheulean handaxes. American Anthropologist 92: 73–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Forschungsbereich AltsteinzeitRömisch-Germanisches Zentralmuseum MainzNeuwiedGermany

Personalised recommendations