Advertisement

The Familial Atypical Multiple Mole Melanoma (FAMMM)-Pancreatic Carcinoma (PC) Syndrome

  • Adam I. RikerEmail author
  • Ramona Hagmaier
Chapter

Abstract

Primary cutaneous melanoma is the most lethal form of skin cancer if not detected and treated at an early stage. The incidence of melanoma continues to increase over the last decade, becoming the cancer with the highest rate of increase among Caucasians [1]. In the United States, the overall incidence of melanoma for the year 2007 is about 62,190 new cases, with over 10,000 individuals dying of metastatic disease each year [2]. It is estimated that 10–15% of all cases of cutaneous melanoma will occur in people with a hereditary predisposition for this disease, with most genetically based cases of melanoma closely linked to atypical nevi [3, 4]. The average lifetime risk for developing melanoma in the general population in the United States is about 1.5%; however, the same risk is markedly elevated in those individuals affected by a germline mutation within the CDKN2A gene, up to 76% over a lifetime [5, 6]. Additionally, carriers of such mutations have been shown to have at least a 13 to 22-fold increased risk for the development of pancreatic cancer [7]. Over the next few years, we will surely identify new mutations in this and other genes as well, which will enlighten us as to the complex genetic relationships between cancers of different histologies.

Keywords

Pancreatic Cancer Germline Mutation Pancreatic Carcinoma Cutaneous Melanoma Primary Cutaneous Melanoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Puig S, Malvehy J, Bandenas C, et al. Role of the CDKN2A locus in patients with multiple primary melanomas. J Clin Oncol 2005;23:3043–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2006. CA Cancer J Clin 2006;56:106–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldstein A, Tucker M. Screening for CDKN2A mutations in hereditary melanoma. J Natl Cancer Inst 1997;89:676–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Haluska FG, Hodi FS. Molecular genetics of familial cutaneous melanoma. J Clin Oncol 1998;16:670–82.PubMedGoogle Scholar
  5. 5.
    Hansen CB, Wadge LM, Lowstuter K, et al. Clinical germline genetic testing for melanoma. Lancet Oncol 2004;5(5):314–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Somoano B, Niendorf KB, Tsao H. Hereditary cancer syndromes of the skin. Clin Dermatol 2005;23:85–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Rieder H, Bartsch DK. Familial pancreatic cancer. Fam Cancer 2004;3(1):69–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Norris W. Case of fungoid disease. Edinburgh Med Surg 1820;16:562.Google Scholar
  9. 9.
    Norris W. Eight cases of melanosis with pathological and therapeutical remarks on that disease. London, UK: Longman, Brown, Green, Longman and Roberts; 1857.Google Scholar
  10. 10.
    Balch CM, Milton GW. Cutaneous melanoma: clinical management and treatment results worldwide. Philadelphia: J.B. Lippincott; 1985.Google Scholar
  11. 11.
    Platz A, Ringborg U, Hansson J. Hereditary cutaneous melanoma. Cancer Biol 2000;10:319–26.CrossRefGoogle Scholar
  12. 12.
    Cawley EP. Genetic aspects of malignant melanoma. AMA Arch Dermatol 1952;65:440–50.CrossRefGoogle Scholar
  13. 13.
    Riker AI, D’Alessio M, Hagmaier R, et al. The surgical management of cutaneous melanoma. G Ital Dermatol Venereol 2007;142(2):171–95.Google Scholar
  14. 14.
    Czajkowski R, Placek W, Drewa G, et al. FAMMM Syndrome: pathogenesis and management. Dermatol Surg 2004;30:291–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Jones R, Ruas M, Gregory F, et al. A CDKN2A mutation in familial melanoma that abrogates binding of p16INK4a to CDK4 but not CDK6. Cancer Res 2007;67(19):9134–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Monzon J, Liu L, Brill H, et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998;338:879–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldstein AM, Struewing JP, Chidambaram A, et al. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 2000;92:1006–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Parker JF, Florell SR, Alexander A, et al. Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 2003;139:1019–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Sviderskaya E, Hill S, Evans-Whipp T, et al. p16Ink4a in melanocyte senescence and differentiation. J Natl Cancer Inst 2002;94:446–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Sviderskaya E, Gray-Schopfer V, Hill S, et al. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progession. J Natl Cancer Inst 2003;95:723–32.PubMedCrossRefGoogle Scholar
  21. 21.
    de Snoo FA, Kroon MW, Bergman W, et al. From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in sporadic atypical nevus patients. J Am Acad Dermatol 2007;56(5):748–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366(6456):704–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsao H, Niendorf K. Genetic testing in hereditary melanoma. J Am Acad Dermatol 2004;51:803–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Nobori T, Miura K, Wu D, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Borg A, Sandberg T, Nilsson K, et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 2000;92:1260–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Lukowsky A, Schafer-Hesterberg G, Sterry W, et al. Germline CDKN2A/p16 mutations are rare in multiple primary and familial malignant melanoma in German patients. J Dermatol Sci in press[au3].Google Scholar
  27. 27.
    Pjanova D, Engele L, Randerson-Moor J, et al. CDKN2A and CDK4 variants in Latvian melanoma patients: analysis of a clinic-based population. Melanoma Res 2007;17:185–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeong J, Park YN, Park JS, et al. Clinical significance of p16 protein expression loss and aberrant p53 protein expression in pancreatic cancer. Yonsei Med J 2005;46:519–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Klein AP, Hruban RH, Brune KA, et al. Familial pancreatic cancer. Cancer J 2001;7:266–73.PubMedGoogle Scholar
  30. 30.
    Rulyak SJ, Brentnall TA, Lynch HT, et al. Characterization of the neoplastic phenotype in the familial atypical multiple-mole melanoma-pancreatic carcinoma syndrome. Cancer 2003;98:798–804.PubMedCrossRefGoogle Scholar
  31. 31.
    Habbe N, Langer P, Sina-Frey M, et al. Familial pancreatic cancer syndromes. Endocrinol Metab Clin N Am 2006;35:417–30.CrossRefGoogle Scholar
  32. 32.
    Whelan AJ, Bartsch D, Goodfellow PJ. Brief Report: A familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-supressor gene. N Engl J Med 1995;333:975–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Lynch HT, Krush AJ. Heredity and malignant melanoma: implications for early cancer detection. Can Med Ass J 1968;99:17–21.PubMedGoogle Scholar
  34. 34.
    Lynch HT, Fusaro RM, Kimberling WJ, et al. Familial atypical multiple mole-melanoma (FAMMM) syndrome: segregation analysis. J Med Genet 1983;20:342–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 1995;333:970–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Vasen H, Gruis N, Frants R, et al. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16. Int J Cancer 2000;87:809–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Bartsch DK, Sina-Frey M, Lang S, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 2002;236:730–37.PubMedCrossRefGoogle Scholar
  38. 38.
    Salek C, Benesova L, Zavoral M, et al. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J Gastroenterol 2007;13:3714–20.PubMedGoogle Scholar
  39. 39.
    Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations in melanoma. J Natl Cancer Inst 2002;94:894–903.PubMedCrossRefGoogle Scholar
  40. 40.
    Hashemi J, Platz A, Ueno T, et al. CDKN2A germline mutations in individuals with multiple cutaneous melanomas. Cancer Res 2000;60:6864–7.PubMedGoogle Scholar
  41. 41.
    Goldstein AM, Chan M, Harland M, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 2006;66(20):9818–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Society of Clinical Oncology. Policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 2003;21:2397–406.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of SurgeryOchsner Cancer InstituteNew OrleansUSA

Personalised recommendations