Tropomyosins in Neuronal Morphogenesis and Development

  • Nikki Margarita Curthoys
  • Peter William Gunning
  • Thomas Fath
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 3)

Abstract

This chapter discusses different aspects of Tropomyosins (Tms) in neurons. Section 18.1 is a brief outline of the Tm isoforms found in brain, Section 18.2 a detailed description of the expression patterns of these isoforms throughout development in neurons and the brain, Section 18.3 summarises the actin binding proteins (ABPs) which are localised in neurons and which interact with these Tm isoforms, Section 18.4 discusses the growth cone, and how Tm isoforms and ABPs may work together to regulate structure and function in this compartment, Section 18.5 examines the structure of the synapse, and which Tm isoforms and ABPs are implicated in synapse morphology and function, Section 18.6 is a brief overview of the implications of Tms in neurological disorders, and Section 18.7 summarises the reasons why understanding Tm isoform functions in neurons can aid in our understanding of the processes controlling neuronal morphogenesis and development. Tm isoforms each have specific spatial distributions across tissue, cells and subcellular compartments. These distributions are temporally regulated, with expression levels and localisation of Tms changing throughout development. In brain, the repertoire of Tm isoforms expressed changes with maturation, and a number of changes in the expression levels and localisation of specific Tms are associated with the defined cellular processes of neuronal morphogenesis and differentiation. By mapping the expression of Tms in brain and in neurons, and the developmental shifts in expression, a composite picture is formed of how different Tms can augment actin filament function throughout neuronal maturation.

Keywords

Actin Actin binding proteins Alternative splicing Brain Differentiation Growth cone Neurological disorders Neurons Synapse Tropomyosin 

References

  1. Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463CrossRefPubMedGoogle Scholar
  2. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi. K (1996) Phosphorylation and activation of myosin by rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249CrossRefPubMedGoogle Scholar
  3. Andrianantoandro E, Pollard. TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23CrossRefPubMedGoogle Scholar
  4. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni. P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809CrossRefPubMedGoogle Scholar
  5. Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39:1071–1076CrossRefPubMedGoogle Scholar
  6. Blanchoin L, Pollard TD, Hitchcock-DeGregori. SE (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol 11:1300–1304CrossRefPubMedGoogle Scholar
  7. Blitz AL, Fine. RE (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci USA 71:4472–4476CrossRefPubMedGoogle Scholar
  8. Bloom O, Evergren E, Tomilin N, Kjaerulff O, Low P, Brodin L, Pieribone VA, Greengard P, Shupliakov. O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 161:737–747CrossRefPubMedGoogle Scholar
  9. Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P, Weinberger. RP (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14:1002–1016CrossRefPubMedGoogle Scholar
  10. Capani F, Martone ME, Deerinck TJ, Ellisman. MH (2001) Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J Comp Neurol 435:156–170CrossRefPubMedGoogle Scholar
  11. Carlisle HJ, Manzerra P, Marcora E, Kennedy. MB (2008) SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J Neurosci 28:13673–13683CrossRefPubMedGoogle Scholar
  12. Chrzanowska-Wodnicka M, Burridge. K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415CrossRefPubMedGoogle Scholar
  13. Cingolani LA, Goda. Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. [Erratum appears in Nat Rev Neurosci. 2008 Jun;9(6):494]. Nat Rev Neurosci 9:344–356CrossRefPubMedGoogle Scholar
  14. Conti MA, Adelstein. RS (2008) Nonmuscle myosin II moves in new directions. J Cell Sci 121:11–18CrossRefPubMedGoogle Scholar
  15. Cox PR, Fowler V, Xu B, Sweatt JD, Paylor R, Zoghbi. HY (2003) Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Mol Cell Neurosci 23:1–12CrossRefPubMedGoogle Scholar
  16. Dabrowska R, Kulikova N, Gagola. M (2004) Nonmuscle caldesmon: its distribution and involvement in various cellular processes. review article. Protoplasma 224:1–13PubMedGoogle Scholar
  17. Dillon C, Goda. Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55CrossRefPubMedGoogle Scholar
  18. Dufour C, Weinberger RP, Schevzov G, Jeffrey PL, Gunning. P (1998a) Splicing of two internal and four carboxyl-terminal alternative exons in nonmuscle tropomyosin 5 pre-mRNA is independently regulated during development. J Biol Chem 273:18547–18555CrossRefPubMedGoogle Scholar
  19. Dufour C, Weinberger RP, Gunning. P (1998b) Tropomyosin isoform diversity and neuronal morphogenesis. Immunol Cell Biol 76:424–429CrossRefPubMedGoogle Scholar
  20. Faivre-Sarrailh C, Had L, Ferraz C, Sri Widada J, Liautard JP, Rabié A (1990) Expression of tropomyosin genes during the development of the rat cerebellum. J Neurochem 55:899–906CrossRefPubMedGoogle Scholar
  21. Fattoum A, Hartwig JH, Stossel. TP (1983) Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry 22:1187–1193CrossRefPubMedGoogle Scholar
  22. Fischer RS, Fowler. VM (2003) Tropomodulins: life at the slow end. Trends Cell Biol 13:593–601CrossRefPubMedGoogle Scholar
  23. Fowler VM (1987) Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J Biol Chem 262:12792–12800PubMedGoogle Scholar
  24. Galloway PG, Mulvihill P, Siedlak S, Mijares M, Kawai M, Padget H, Kim R, Perry. G (1990) Immunochemical demonstration of tropomyosin in the neurofibrillary pathology of alzheimer’s disease. Am J Pathol 137:291–300PubMedGoogle Scholar
  25. Galloway PG, Perry. G (1991) Tropomyosin distinguishes Lewy bodies of Parkinson disease from other neurofibrillary pathology. Brain Res 541:347–349CrossRefPubMedGoogle Scholar
  26. Galloway PG, Perry G, Gambetti. P (1987) Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 46:185–199CrossRefPubMedGoogle Scholar
  27. Gregorio CC, Fowler. VM (1995) Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol 129:683–695CrossRefPubMedGoogle Scholar
  28. Groc L, Choquet. D (2006) AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 326:423–438CrossRefPubMedGoogle Scholar
  29. Gunning P, Hardeman E, Jeffrey P, Weinberger. R (1998) Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. Bioessays 20:892–900CrossRefPubMedGoogle Scholar
  30. Gunning P, O’Neill G, Hardeman. E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35CrossRefPubMedGoogle Scholar
  31. Gunning PW, Schevzov G, Kee AJ, Hardeman. EC (2005) Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 15:333–341CrossRefPubMedGoogle Scholar
  32. Had L, Faivre-Sarrailh C, Legrand C, Mery J, Brugidou J, Rabie. A (1994) Tropomyosin isoforms in rat neurons: the different developmental profiles and distributions of TM-4 and TMBr-3 are consistent with different functions. J Cell Sci 107:2961–2973PubMedGoogle Scholar
  33. Had L, Faivre-Sarrailh C, Legrand C, Rabié. A (1993) The expression of tropomyosin genes in pure cultures of rat neurons, astrocytes and oligodendrocytes is highly cell-type specific and strongly regulated during development. Mol Brain Res 18:77–86CrossRefPubMedGoogle Scholar
  34. Hannan AJ, Gunning P, Jeffrey PL, Weinberger. RP (1998) Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 11:289–304CrossRefPubMedGoogle Scholar
  35. Hannan AJ, Schevzov G, Gunning P, Jeffrey PL, Weinberger. RP (1995) Intracellular localization of tropomyosin mRNA and protein is associated with development of neuronal polarity. Mol Cell Neurosci 6:397–412CrossRefPubMedGoogle Scholar
  36. Higgs HN, Pollard. TD (2001) Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 70:649–676CrossRefPubMedGoogle Scholar
  37. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai. H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729CrossRefPubMedGoogle Scholar
  38. Horiuchi KY, Chacko. S (1988) Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry 27:8388–8393CrossRefPubMedGoogle Scholar
  39. Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen. P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339CrossRefPubMedGoogle Scholar
  40. Ishikawa R, Hayashi K, Shirao T, Xue Y, Takagi T, Sasaki Y, Kohama. K (1994) Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269:29928–29933PubMedGoogle Scholar
  41. Ishikawa R, Yamashiro S, Matsumura. F (1989) Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem 264:7490–7497PubMedGoogle Scholar
  42. Ivanov A, Esclapez M, Pellegrino C, Shirao T, Ferhat. L (2009) Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons. J Cell Sci 122:524–534CrossRefPubMedGoogle Scholar
  43. Kira M, Tanaka J, Sobue. K (1995) Caldesmon and low Mr isoform of tropomyosin are localized in neuronal growth cones. J Neurosci Res 40:294–305CrossRefPubMedGoogle Scholar
  44. Korobova F, Svitkina. T (2008) Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell 19:1561–1574CrossRefPubMedGoogle Scholar
  45. Kostyukova AS (2008a) Capping complex formation at the slow-growing end of the actin filament. Biochemistry (Mosc) 73:1467–1472CrossRefGoogle Scholar
  46. Kostyukova AS (2008b) Tropomodulins and tropomodulin/tropomyosin interactions. Cell Mol Life Sci 65:563–569CrossRefPubMedGoogle Scholar
  47. Kovar DR (2006) Cell polarity: formin on the move. Curr Biol 16:R535–R538CrossRefPubMedGoogle Scholar
  48. Kuhn TB, Bamburg. JR (2008) Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol 644:232–249CrossRefPubMedGoogle Scholar
  49. Landis DM, Reese. TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 97:1169–1178CrossRefPubMedGoogle Scholar
  50. Lees-Miller JP, Yan A, Helfman. DM (1990) Structure and complete nucleotide sequence of the gene encoding rat fibroblast tropomyosin 4. J Mol Biol 213:399–405CrossRefPubMedGoogle Scholar
  51. Lehman W, Craig. R (2008) Tropomyosin and the steric mechanism of muscle regulation. Adv Exp Med Biol 644:95–109CrossRefPubMedGoogle Scholar
  52. Lin CH, Espreafico EM, Mooseker MS, Forscher. P (1997) Myosin drives retrograde F-actin flow in neuronal growth cones. Biol Bull 192:183–185CrossRefPubMedGoogle Scholar
  53. Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto. E (2009) Proteome analysis of schizophrenia patients wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17CrossRefPubMedGoogle Scholar
  54. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara. K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 79:7590–7594CrossRefPubMedGoogle Scholar
  55. Medeiros NA, Burnette DT, Forscher. P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226CrossRefPubMedGoogle Scholar
  56. Mello CF, Sultana R, Piroddi M, Cai J, Pierce WM, Klein JB, Butterfield. DA (2007) Acrolein induces selective protein carbonylation in synaptosomes. Neuroscience 147:674–679CrossRefPubMedGoogle Scholar
  57. Mullins RD, Heuser JA, Pollard. TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186CrossRefPubMedGoogle Scholar
  58. Nicholson-Flynn K, Hitchcock-DeGregori SE, Levitt. P (1996) Restricted expression of the actin-regulatory protein, tropomyosin, defines distinct boundaries, evaginating neuroepithelium, and choroid plexus forerunners during early CNS development. J Neurosci 16:6853–6863PubMedGoogle Scholar
  59. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura. T (2002) Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246CrossRefPubMedGoogle Scholar
  60. Ono S, Ono. K (2002) Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J Cell Biol 156:1065–1076CrossRefPubMedGoogle Scholar
  61. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen. MK (2005) Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 18:273–281CrossRefPubMedGoogle Scholar
  62. Owen JB, Di Domenico F, Sultana R, Perluigi M, Cini C, Pierce WM, Butterfield. DA (2009) Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: implications for progression of AD. J Proteome Res 8:471–482CrossRefPubMedGoogle Scholar
  63. Percival JM, Hughes JA, Brown DL, Schevzov G, Heimann K, Vrhovski B, Bryce N, Stow JL, Gunning. PW (2004) Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol Biol Cell 15:268–280CrossRefPubMedGoogle Scholar
  64. Pilo Boyl P, Di Nardo A, Mulle C, Sassoe-Pognetto M, Panzanelli P, Mele A, Kneussel M, Costantini V, Perlas E, Massimi M, Vara H, Giustetto M, Witke. W (2007) Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 26:2991–3002CrossRefPubMedGoogle Scholar
  65. Racz B, Weinberg. RJ (2006) Spatial organization of cofilin in dendritic spines. Neuroscience 138:447–456CrossRefPubMedGoogle Scholar
  66. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng. M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182CrossRefPubMedGoogle Scholar
  67. Sankaranarayanan S, Atluri PP, Ryan. TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135CrossRefPubMedGoogle Scholar
  68. Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O’Neill M, Yang G,N, Verrills NM, Kavallaris M, Gunning. PW (2005a) Tissue-specific tropomyosin isoform composition. J Histochem Cytochem 53:557–570CrossRefPubMedGoogle Scholar
  69. Schevzov G, Gunning P, Jeffrey PL, Temm-Grove C, Helfman DM, Lin JJ, Weinberger. RP (1997) Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Mol Cell Neurosci 8:439–454CrossRefPubMedGoogle Scholar
  70. Schevzov G, Bryce NS, Almonte-Baldonado R, Joya J, Lin JJ, Hardeman E, Weinberger R, Gunning. P (2005b) Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol Biol Cell 16:3425–3437CrossRefPubMedGoogle Scholar
  71. Sekino Y, Kojima N, Shirao. T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104CrossRefPubMedGoogle Scholar
  72. Sellers JR (1981) Phosphorylation-dependent regulation of Limulus myosin. J Biol Chem 256:9274–9278PubMedGoogle Scholar
  73. Shupliakov O, Bloom O, Gustafsson JS, Kjaerulff O, Low P, Tomilin N, Pieribone VA, Greengard P, Brodin. L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci USA 99:14476–14481CrossRefPubMedGoogle Scholar
  74. Stamm S, Casper D, Lees-Miller JP, Helfman. DM (1993) Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain. Proc Natl Acad Sci USA 90:9857–9861CrossRefPubMedGoogle Scholar
  75. Svitkina TM, Borisy. GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026CrossRefPubMedGoogle Scholar
  76. Svitkina TM, Verkhovsky AB, McQuade KM, Borisy. GG (1997) Analysis of the Actin-Myosin II system in fish Epidermal Keratocytes: mechanism of cell body translocation. J Cell Biol 139:397–415CrossRefPubMedGoogle Scholar
  77. Takahashi H, Mizui T, Shirao. T (2006) Down-regulation of drebrin A expression suppresses synaptic targeting of NMDA receptors in developing hippocampal neurones. J Neurochem 97(Suppl 1):110–115CrossRefPubMedGoogle Scholar
  78. Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao. T (2003) Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 23:6586–6595PubMedGoogle Scholar
  79. Takahashi H, Yamazaki H, Hanamura K, Sekino Y, Shirao. T (2009) Activity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis. J Cell Sci 122:1211–1219CrossRefPubMedGoogle Scholar
  80. Trifaro JM, Lejen T, Rose SD, Pene TD, Barkar ND, Seward. EP (2002) Pathways that control cortical F-actin dynamics during secretion. Neurochem Res 27:1371–1385CrossRefPubMedGoogle Scholar
  81. Ujfalusi Z, Vig A, Hild G, Nyitrai. M (2009) Effect of tropomyosin on formin-bound actin filaments. Biophys J 96:162–168CrossRefPubMedGoogle Scholar
  82. Verkhovsky AB, Chaga OY, Schaub S, Svitkina TM, Meister J-J, Borisy. GG (2003) Orientational order of the Lamellipodial Actin network as demonstrated in living motile cells. Mol Biol Cell 14:4667–4675CrossRefPubMedGoogle Scholar
  83. Vrhovski B, Schevzov G, Dingle S, Lessard JL, Gunning P, Weinberger. RP (2003) Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain. J Neurosci Res 72:373–383CrossRefPubMedGoogle Scholar
  84. Wallar BJ, Alberts. AS (2003) The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 13:435–446CrossRefPubMedGoogle Scholar
  85. Wang CL (2008) Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol 644:250–272CrossRefPubMedGoogle Scholar
  86. Wang Z, Edwards JG, Riley N, Provance DW Jr., Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers. MD (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity.[see comment]. Cell 135:535–548CrossRefPubMedGoogle Scholar
  87. Watakabe A, Kobayashi R, Helfman. DM (1996) N-Tropomodulin: a novel isoform of tropomodulin identified as the major binding protein to brain tropomyosin. J Cell Sci 109(Pt 9):2299–2310PubMedGoogle Scholar
  88. Wawro B, Greenfield NJ, Wear MA, Cooper JA, Higgs HN, Hitchcock-DeGregori. SE (2007) Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament. Biochemistry 46:8146–8155CrossRefPubMedGoogle Scholar
  89. Weber A, Pennise CR, Babcock GG, Fowler. VM (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127:1627–1635CrossRefPubMedGoogle Scholar
  90. Weinberger RP, Henke RC, Tolhurst O, Jeffrey PL, Gunning. P (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation. J Cell Biol 120:205–215CrossRefPubMedGoogle Scholar
  91. Weinberger R, Schevzov G, Jeffrey P, Gordon K, Hill M, Gunning. P (1996) The molecular composition of neuronal microfilaments is spatially and temporally regulated. J Neurosci 16:238–252PubMedGoogle Scholar
  92. Yamashiro-Matsumura S, Matsumura. F (1988) Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol 106:1973–1983CrossRefPubMedGoogle Scholar
  93. Yamawaki-Kataoka Y, Helfman. DM (1987) Isolation and characterization of cDNA clones encoding a low molecular weight nonmuscle tropomyosin isoform. J Biol Chem 262:10791–10800PubMedGoogle Scholar
  94. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno. K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812CrossRefPubMedGoogle Scholar
  95. Yao W, Sung. LA (2009) Specific expression of E-Tmod (Tmod1) in horizontal cells: implications in neuronal cell mechanics and glaucomatous retina. Mol Cell Biomech 6:71–82PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nikki Margarita Curthoys
    • 1
  • Peter William Gunning
    • 1
  • Thomas Fath
    • 2
  1. 1.Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Department of Anatomy, School of Medical SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations