Multisensor Global Retrievals of Evapotranspiration for Climate Studies Using the Surface Energy Budget System

  • Matthew McCabeEmail author
  • Eric Wood
  • Hongbo Su
  • Raghuveer Vinukollu
  • Craig Ferguson
  • Z. Su
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


Evaporation from water or soil surfaces and transpiration from plants combine to return available water at the surface layer back to the bulk atmosphere in a process called evapotranspiration. Much of our understanding of the complex feedback mechanisms between the Earth’s surface and the surrounding atmosphere is focused on quantifying this process. At its most fundamental level, evapotranspiration is the loss of water from a surface to the atmosphere, achieved through vaporization. The complex nature of the evaporative process, however, includes mechanisms such as turbulent transport, feedback between the surface and atmosphere, and the biophysical nature of transpiration – all of which combine to make both measurement and estimation a difficult task.


Root Mean Square Error Normalize Difference Vegetation Index Leaf Area Index Latent Heat Flux Land Surface Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



NASA supported this work through grant NNG04GQ32G: A Terrestrial Evaporation Product Using MODIS Data. This support is gratefully acknowledged.


  1. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): applications. ASCE J Irrigation Drainage Eng 133(4):395–406CrossRefGoogle Scholar
  2. Anderson MC, Norman JM, Diak GR, Kustas WP, Mecikalski JR (1997) A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Rem Sens Environ 60(2):195–216CrossRefGoogle Scholar
  3. Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1 Model formulation. J Geophys Res 112:D10117, doi:10.1029/2006JD007506ADSCrossRefGoogle Scholar
  4. Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, Van der Wal T (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 2 Validation. J Hydrol 212/213:213–229CrossRefGoogle Scholar
  5. Beven KJ, Fisher J (1996) Remote sensing and scaling in hydrology. In Stewart JB, Engman ET, Feddes RA, Kerr Y (eds) Scaling up in hydrology using remote sensing. Wiley, Chichester, UKGoogle Scholar
  6. Bisht G, Venturini V, Islam, S, Jiang L (2005) Estimation of net radiation using MODIS-Terra data for clear sky days. Rem Sens Environ 97(1):52–67CrossRefGoogle Scholar
  7. Brunsell NA, Ham JM, Owensby CE (2008) Assessing the multi-resolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment. Rem Sens Environ 112:2977–2987CrossRefGoogle Scholar
  8. Chen JM, Cihlar J (1995) Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size methods. IEEE Trans Geosci Remote Sens 33:777–787ADSCrossRefGoogle Scholar
  9. Chen LF, Li Z-L, Liu S, Tang Y, Zhong B (2004) Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation. Int J Remote Sens 25:231–244CrossRefGoogle Scholar
  10. Chen TH and Coauthors (1997) Cabauw experimental results from the Project for Intercomparison of Land-surface Parameterization Schemes. J. Climate, 10:1194–1215CrossRefGoogle Scholar
  11. Crago RD (1996) Conservation and variability of the evaporative fraction during the daytime. J Hydrology 180(1–4):173–194ADSCrossRefGoogle Scholar
  12. Crow W, Wood EF, Pan M (2004) Multi-objective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J Geophys Res 108(D23): 4725, doi:1029/2002JD003292Google Scholar
  13. Diak GR, Whipple MS (1995) Estimating surface sensible heat fluxes using surface temperatures measured from a geostationary satellite during FIFE 1989 – Note. J Geophys Res 100(D12): 25453–25461ADSCrossRefGoogle Scholar
  14. Gao H, Wood EF, Drusch M, McCabe MF (2007) Copula derived observation operators for assimilating TMI and AMSR-E soil moisture into land surface models. J Hydrometeorol 8(3): 413–429ADSCrossRefGoogle Scholar
  15. Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 26(3):139–168CrossRefGoogle Scholar
  16. Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell, TA, Tolk JA (2007) Remote sensing based energy balance algorithms for mapping ET: current status and future challenges. Trans Am Soc Agri Biol Eng (ASABE) 50(5):1639–1644Google Scholar
  17. Jackson TJ, Cosh MH (2003a) SMEX02 watershed soil moisture data, Walnut Creek, Iowa. National Snow and Ice Data Center. Digital Media, Boulder, COGoogle Scholar
  18. Jackson TJ, Cosh MH (2003b) SMEX02 Landsat Thematic Mapper Imagery, Iowa. National Snow and Ice Data Center. Digital media, Boulder, COGoogle Scholar
  19. Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29:421–469, doi: 10.1007/s10712-008-9037-zADSCrossRefGoogle Scholar
  20. King MD, Kaufman YJ, Menzel WP, Tanré D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:2–27ADSCrossRefGoogle Scholar
  21. Kumar SV, Peters-Lidard CD, Tian Y, Houser PR, Geiger J, Olden S, Lighty L, Eastman JL, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2006) Land Information System – An Interoperable Framework for High Resolution Land Surface Modeling. Environ Model Softw 21(10):1402–1415, doi:10.1016/j.envsoft.2005.07.004CrossRefGoogle Scholar
  22. Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surface. Hydrol Sci J 41(4):495–516CrossRefGoogle Scholar
  23. Kustas WP, Norman JM (1997) A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour Res 33(6):1495–1508ADSCrossRefGoogle Scholar
  24. Kustas WP, Li F, Jackson TJ, Prueger JH, MacPherson, JI, Wolde M (2004) Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sens Environ 92(4):535–547CrossRefGoogle Scholar
  25. Kustas WP, Hatfield, JL, Prueger JH (2005) The Soil Moisture Atmosphere Coupling Experiment (SMACEX): background, hydrometeorological conditions and preliminary findings. J Hydrometeorol 6(6):791–804ADSCrossRefGoogle Scholar
  26. Li, F, Kustas WP, Anderson MC, Prueger JH, Scott RL (2008) Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens Environ 112:337–349CrossRefGoogle Scholar
  27. Li F, Jackson TJ, Kustas WP, Schmugge TJ, French AN, Cosh, MH, Bindlish R (2004) Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens Environ 92(4):521–534CrossRefGoogle Scholar
  28. Liang S, Strahler AH, Walthall C (1999) Retrieval of land surface albedo from satellite observations: a simulation study. J Appl Meteorol 38(6):712–725CrossRefGoogle Scholar
  29. Luo L, Robock A, Mitchell KE, Houser PR, Wood EF, Schaake JC, Lohmann D, Cosgrove B, Wen F, Sheffield J, Duan Q, Higgins RW, Pinker RT, Tarpley JD (2003) Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains. J Geophys Res 108:8843, doi:10.1029/2002JD003246CrossRefGoogle Scholar
  30. Margolis HA, Ryan MG (1997) A physiological basis for biosphere-atmosphere interactions in the boreal forest: an overview. Tree Physiol 17(8–9):491–499CrossRefGoogle Scholar
  31. McCabe MF, Kalma JD, Franks SW (2005) Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework. Hydrol Earth Syst Sci 9(5):467–480ADSCrossRefGoogle Scholar
  32. McCabe MF, Wood EF (2006) Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens Environ 105(4):271–285CrossRefGoogle Scholar
  33. McCabe MF, Balick LK, Theiler JP, Gillespie AR, Mushkin A (2008a) Forward modeling of linear mixing in thermal IR temperature retrieval. Int J Remote Sens 29: 5047–5061.Google Scholar
  34. McCabe MF, Wood EF, Wójcik R, Pan M, Sheffield J, Su H, Gao H (2008b) Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens Environ 112(2):430–444, doi:10.1016/j.rse.2007.03.027CrossRefGoogle Scholar
  35. McVicar TR, Jupp DLB (2002) Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: a novel use of remotely sensed data. Remote Sens Environ 79:199–212CrossRefGoogle Scholar
  36. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove B, Sheffield J, Duan Q, Luo L, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109(D7): doi:10.1029/2003JD003823Google Scholar
  37. Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski JR, Torn RD, Diak GR, Schmugge, TJ, Tanner BCW (2003) Remote sensing of surface energy fluxes at 101-m resolutions. Water Resour Res 39(8):1221, doi:10.1029/2002WR001775ADSCrossRefGoogle Scholar
  38. Norman JM, Kustas WP, Prueger, JH, Diak GR (2000) Surface flux estimation using radiometric temperature: a dual temperature-difference method to minimize measurement errors. Water Resour Res 36(8):263–2274Google Scholar
  39. Nunez M, Kalma JD (1996) Satellite mapping of the surface radiation budget. In: Stanhill G (ed) Advances in bioclimatology. Springer-Verlag, Berlin, pp 63–124CrossRefGoogle Scholar
  40. Pan M, Wood EF, Wójcik R, McCabe MF (2008) Estimation of the regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens Environ 112(4):1282–1294, doi:10.1016/j.rse.2007.02.039CrossRefGoogle Scholar
  41. Pinker RT, Laszlo I (1992) Modelling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31:194–211CrossRefGoogle Scholar
  42. Pinker RT, Wang H, King MD, Platnick S (2003) The first use of MODIS data to cross-calibrate with GEWEX/SRB datasets. GEWEX News 13(4)Google Scholar
  43. Prata AJ, Caselles V, Coll C, Sobrino JA, Ottle C (1995) Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens Rev 12:175–224CrossRefGoogle Scholar
  44. Prueger JH, Hatfield JL, Kustas WP, Hipps LE, Li F, Macpherson I, Anderson MC, Parkin TB, Eichinger WE, Cooper DJ (2005a) Spatial and temporal variation of water, energy and carbon fluxes from tower and aircraft measurements. American Meteorological Society Conference Paper, 5 p.Google Scholar
  45. Prueger JH, Hatfield JL, Kustas WP, Hipps LE, MacPherson JI, Neale CMU, Eichinger WE, Cooper DI, Parkin TB (2005b) Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX. J Hydrometeorol 6(6):954–960ADSCrossRefGoogle Scholar
  46. Quattrochi DA, Luvall FJC (1999) Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape Ecol 14:577–598CrossRefGoogle Scholar
  47. Raupach MR, Finnigan JJ (1995) Scale issues in boundary-layer meteorology: surface energy balance in heterogeneous terrain. Hydrol Processes 9:589–612ADSCrossRefGoogle Scholar
  48. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorological Soc 85(3):381–394ADSCrossRefGoogle Scholar
  49. Rogers E, Black TL, Deaven DG, Dimego GJ, Zhao Q, Baldwin M, Junker NW, Lin Y (1996) Changes to the operational “Early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Weather Forecasting 11:391–413ADSCrossRefGoogle Scholar
  50. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R, Hu B, Liang S, Privette JL (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83:135–148CrossRefGoogle Scholar
  51. Su Z (2000) Remote sensing of land use and vegetation for mesoscale hydrological studies. Int J Remote Sens 21:213–233ADSCrossRefGoogle Scholar
  52. Su Z (2002) The surface energy balance system (SEBS) for the estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99ADSCrossRefGoogle Scholar
  53. Su H, McCabe MF, Wood EF, Su Z, Prueger JH (2005) Modeling evapotranspiration during SMACEX02: comparing two approaches for local and regional scale prediction. J Hydrometeorol 6(6):910–922ADSCrossRefGoogle Scholar
  54. Su H, Wood EF, McCabe MF, Su Z (2007) Evaluation of remotely sensed evapotranspiration over the CEOP EOP-1 reference sites. J Meteorol Soc Jpn 85A:439–459CrossRefGoogle Scholar
  55. Su H, Wood EF, Wang H, Pinker RT (2008) Spatial and temporal scaling behavior of surface shortwave downward radiation based on MODIS and in-situ measurements. Geophys Res Lett 5(3):542–546, doi: 10.1109/LGRS.2008.923209.Google Scholar
  56. Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Climate 12:1368–1381ADSCrossRefGoogle Scholar
  57. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300CrossRefGoogle Scholar
  58. Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8:70–117CrossRefGoogle Scholar
  59. Wan Z, Zhang Y, Zhang Q, Li Z-L (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83:163–180CrossRefGoogle Scholar
  60. Wang Z, Heng X, Barlage M, Dickinson RE, Gao F, Schaaf CB (2004) Using MODIS BRDF and albedo data to evaluate global model land surface albedo. J Hydrometeorol 5(1):3–14ADSCrossRefGoogle Scholar
  61. Xavier AC, Vettorazzi CA (2004) Mapping leaf area index through spectral vegetation indices in a subtropical watershed. Int J Remote Sens 25(9):1661–1672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Matthew McCabe
    • 1
    Email author
  • Eric Wood
  • Hongbo Su
  • Raghuveer Vinukollu
  • Craig Ferguson
  • Z. Su
  1. 1.Department of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations