Advertisement

MODIS-Derived Global Fire Products

  • Christopher O. Justice
  • Louis Giglio
  • David Roy
  • Luigi Boschetti
  • Ivan Csiszar
  • Diane Davies
  • Stefania Korontzi
  • W. Schroeder
  • Kelley O’Neal
  • Jeff Morisette
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)

Abstract

The NASA MODIS global fire data products are digital maps calculated from Terra and Aqua MODIS data, designed primarily to serve the needs of the emissions modeling community. The algorithms were designed to provide a comprehensive global product, and to perform well over the expected range of fire conditions and scene variability. The goal was to maximize product accuracy, and minimize errors of commission and omission. Two products exist, including one, which characterizes actively burning fire locations at satellite overpass time, and two, which depicts the area burned, also called fire-affected areas (URL 1). Since the launch of Terra and Aqua, the user community has expanded to include federal agencies with operational fire monitoring mandates and natural resource managers as well the intended global change researchers.

Keywords

Short Message Service Burned Area Bidirectional Reflectance Distribution Function MODIS Fire Fire Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This paper is dedicated to the memory of Yoram Kaufman, who played an important role in developing the MODIS Fire product and the Fire Radiative Power concept. His collaboration with the MODIS Fire Team is truly missed. The work presented here was funded under NASA Grants NNG04HZ18C (EOS), NNS06AA04A (Applications) and NAG513627 (LBA-ECO Phase II).

References

  1. Agresti A (1990) Categorical data analysis. Wiley, New YorkzbMATHGoogle Scholar
  2. Cochrane MA, Alencar A, Schulze MD Jr, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835CrossRefGoogle Scholar
  3. Crutzen PA, Goldammer JG (1993) Fire in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Dahlem Konferenz (15–20 March 1992, Berlin), ES13, Wiley, Chichester, 400 ppGoogle Scholar
  4. Csiszar I, Denis L, Giglio L, Justice CO, Hewson J (2005) Global fire distribution from MODIS. Int J Wildland Fire 14:117–130CrossRefGoogle Scholar
  5. Csiszar I, Morisette J, Giglio L (2006a) Validation of active fire detection from moderate resolution satellite sensors: the MODIS example in Northern Eurasia. IEEE Trans Geosci Remote Sens 44:1757–1764ADSCrossRefGoogle Scholar
  6. Csiszar I, Justice CO, Goldammer JG, Lynham T, de Groot WJ, Prins EM, Elvidge CD, Oertel D, Lorenz E, Bobbe T, Quayle B, Davies D, Roy D, Boschetti L, Korontzi S, Ambrose S, Stephens G (2006b) The GOFC/GOLD fire mapping and monitoring theme: assessment and strategic plans. In: Earth Science Satellite Remote Sensing. Springer, Dordrecht, The NetherlandsGoogle Scholar
  7. Giglio L, Kendall JD, Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20:1947–1985CrossRefGoogle Scholar
  8. Giglio L, Kendall JD, Tucker CJ (2000) Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21:203–207CrossRefGoogle Scholar
  9. Giglio L, Kendall JD, Mack R (2003a) A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int J Remote Sens 24:4505–4525CrossRefGoogle Scholar
  10. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003b) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–382CrossRefGoogle Scholar
  11. Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. J Geophys Res 111:G02016. doi:10.1029/2005JG000142CrossRefGoogle Scholar
  12. Giglio L, Csiszar I, Restás Á, Morisette JT, Schroeder W, Morton D, Justice CO (2008) Active fire detection and characterization with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens Environ 112:3055–3063Google Scholar
  13. Justice CO, Malingreau JP, Setzer A (1993) Satellite remote sensing of fires: potential and limitation. In: Crutzen P, Goldammer J (eds) Fire in the environment: its ecological, climatic and atmospheric chemical importance. Wiley, Chichester, pp 77–87Google Scholar
  14. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy DP, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262CrossRefGoogle Scholar
  15. Justice CO, Smith R, Gill M, Csiszar I (2003) Satellite-based fire monitoring: current capabilities, future directions and applications in Australia. Int J Wildland Fire 102:247–258CrossRefGoogle Scholar
  16. Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238ADSCrossRefGoogle Scholar
  17. Korontzi S, Roy DP, Justice CO, Ward DE (2004) Modeling and sensitivity analysis of fire emissions in southern African during SAFARI 2000. Remote Sens Environ 92:255–275CrossRefGoogle Scholar
  18. Korontzi S, McCarty J, Loboda T, Kumar S, Justice C (2006) Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochem Cycles 20:GB2021. doi:10.1029/2005GB002529ADSCrossRefGoogle Scholar
  19. Lucht W, Lewis PE (2000) Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int J Remote Sens 21:81–98CrossRefGoogle Scholar
  20. Masuoka E, Wolfe R, Saleous N, Teague M, Roy DP, Devadiga S, Morisette JT, Maiersperger T, Justice CO MODIS land data products: generation, quality assurance and validation. (In this volumeFloatPlease update the reference “Masuoka et al. (in this volume)” both in the list and text.)Google Scholar
  21. Morisette JT, Giglio L, Csiszar I, Justice CO (2005a) Validation of the MODIS Active fire product over Southern Africa with ASTER data. Int J Remote Sens 26:4239–4264CrossRefGoogle Scholar
  22. Morisette JT, Giglio L, Csiszar I, Setzer A, Schroeder W, Morton D, Justice CO (2005b) Validation of MODIS active fire detection products derived from two algorithms. Earth Interact 9:1–23CrossRefGoogle Scholar
  23. Roy DP, Landmann T (2005) Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data. Int J Remote Sens 26:4197–4218CrossRefGoogle Scholar
  24. Roy D, Giglio L, Kendall J, Justice C (1999) Multitemporal active fire-based burn scar detection algorithm. Int J Remote Sens 20:1031–1038CrossRefGoogle Scholar
  25. Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate ­spatial resolution data – a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286CrossRefGoogle Scholar
  26. Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Remote Sens Environ 97:137–162CrossRefGoogle Scholar
  27. Roy DP, Lewis P, Schaaf C, Devadiga S, Boschetti L (2006) The Global impact of cloud on the production of MODIS bi-directional reflectance model based composites for terrestrial monitoring. IEEE Geosci Remote Sens Lett 3(4):452–456. doi:10.1109/LGRS.2006.875433ADSCrossRefGoogle Scholar
  28. Russell-Smith J, Yates C, Edwards A, Allan GE, Cook GD, Cooke P, Craig R, Heath D, Smith BR (2003) Contemporary fire regimes of northern Australia, 1997–2001: changes since Aboriginal occupancy, challenges for sustainable management. Int J Wildland Fire 12:283–297CrossRefGoogle Scholar
  29. Salomon JG, Schaaf CB, Strahler AH, Gao F, Jin YF (2006) Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans Geosci Remote Sens 44(6):1555–1565ADSCrossRefGoogle Scholar
  30. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell N, Zhang X, Jin Y, Muller J-P, Lewis PE, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, d’Entremont RP, Hu B, Liang S, Privette J, Roy DP (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83:135–148CrossRefGoogle Scholar
  31. Schroeder W, Morisette JT, Csiszar I, Giglio L, Morton D, Justice CO (2005) Characterizing vegetation fire dynamics in Brazil through multi-satellite data: common trends and practical issues. Earth Interact 9(13):1–26CrossRefGoogle Scholar
  32. Schroeder W, Csiszar I, Morisette JT (2007). Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ. doi:10.1016/j.rse.2007.05.004Google Scholar
  33. Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette JT, Morton D (2008) Validation of GOES and MODIS active fire detection products using ASTER and ETM+. Remote Sens Environ 112:2711–2726Google Scholar
  34. Silva JMN, Pereira JMC, Cabral AI, Sá A, Vasconcelos MJP, Mota B, Grégoire J-M (2003) An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION. J Geophys Res 108(D13):498. doi:10.1029/2002JD002320Google Scholar
  35. Simon M, Plummer S, Fierens F, Hoeltzemann JJ, Arino O (2004) Burnt area detection at global scale using ATSR-2: the GLOBSCAR products and their qualification. J Geophys Res 109(D14):D14S02. doi:10.1029/2003JD003622CrossRefGoogle Scholar
  36. Tansey K, Binaghi E, Boschetti L, Brivio PA, Cabral A, Ershov D, Flasse S, Fraser R, Gallo I, Graetz D, Grégoire J-M, Maggi M, Peduzzi P, Pereira JM, Sá A, Silva J, Sousa A, Stroppiana D, Vasconcelos MJP (2002) Implementation of regional burnt area algorithms for the GBA-2000 initiative. European Commission Joint Research Centre, EUR 20532 EN. Publications of the European Commission, pp 1–159Google Scholar
  37. URL 1: http://modis-fire.umd.edu/ Accessed 27 Nov 2007
  38. URL 2: http://rapidfire.sci.gsfc.nasa.gov Accessed 27 Nov 2007
  39. URL 3: http://maps.geog.umd.edu/firms Accessed 27 Nov 2007
  40. URL 4: http://www.cptec.inpe.br/queimadas/ Accessed 27 Nov 27 2007
  41. URL 5: http://gofc-fire.umd.edu/index.asp Accessed 27 Nov 2007
  42. URL 6: http://map.sdsu.edu/ Accessed 27 Nov 2007
  43. Wolfe R, Roy D, Vermote E (1998) The MODIS land data storage, gridding and compositing methodology: L2 Grid. IEEE Trans Geosci Remote Sens 36:1324–1338ADSCrossRefGoogle Scholar
  44. Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens Environ 86:83–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christopher O. Justice
    • 1
  • Louis Giglio
  • David Roy
  • Luigi Boschetti
  • Ivan Csiszar
  • Diane Davies
  • Stefania Korontzi
  • W. Schroeder
  • Kelley O’Neal
  • Jeff Morisette
  1. 1.Department of GeographyUniversity of MarylandCollege ParkUSA

Personalised recommendations