MODIS Land Data Products: Generation, Quality Assurance and Validation

  • Edward MasuokaEmail author
  • David Roy
  • Robert Wolfe
  • Jeffery Morisette
  • Scott Sinno
  • Michael Teague
  • Nazmi Saleous
  • Sadashiva Devadiga
  • Christopher O. Justice
  • Jaime Nickeson
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Earth Observing System (EOS) Terra and Aqua satellites are key instruments that ­provide data on global land, atmosphere, and ocean dynamics (Salomonson et al. 1989). MODIS acquires data, which covers the entire earth surface on a near-daily basis in 36 spectral bands that span the visible (0.415 µm) to infrared (14.235 µm) spectra at 1-km, 500-m, and 250-m nadir pixel resolutions.


Land Surface Temperature Land Product Science Team MODIS Land Earth Observe System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the dedication of the staff of the MODIS SDST and the MODIS Land Science Team. This work was performed in the Terrestrial Information Systems Branch (Code 614.5) of the Hydrospheric and Biospheric Sciences Laboratory (Code 614) at NASA GSFC. The work was funded under NASA contracts NAS5-32350 and NAS5-02041.


  1. Asrar G, Ramapriyan HK (1995) Data and information system for mission to planet Earth. Remote Sens Rev 13:1–25CrossRefGoogle Scholar
  2. Cihlar J, Chen J, Li Z (1997) On the validation of satellite-derived products for land applications. Canadian J Remote Sens 23(4):381–389Google Scholar
  3. Cohen WB, Justice CO (1999) Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sens Environ 70(1):1–3CrossRefGoogle Scholar
  4. Cohen WB, Maiersperger TK, Turner DP, Ritts WD, Pflugmacher D, Kennedy RE, Kirschbaum A, Running SW, Costa M, Gower ST (2006) MODIS land cover and LAI collection 4 product quality across nine sites in the Western Hemisphere. IEEE Trans Geosci Remote Sens 44(7):1843–1857ADSCrossRefGoogle Scholar
  5. Csiszar IA, Morisette JT, Giglio L, (2006). Validation of active fire detection from moderate resolution satellite sensors: the MODIS example in Northern Eurasia. IEEE Trans Geosci Remote Sens 44(7):1757–1764ADSCrossRefGoogle Scholar
  6. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal clox/NOX interaction. Nature 315:207–210, May. doi:10.1038/315207a0ADSCrossRefGoogle Scholar
  7. Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, fapar, and net primary production of terrestrial ecosystems. Remote Sens of Environ 70:29–51CrossRefGoogle Scholar
  8. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  9. Justice CO, Townshend JRG (1994) Data sets for global remote sensing: lessons learnt. Int J Remote Sens 15(17):3621–3639CrossRefGoogle Scholar
  10. Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Wolfe R, Knyazikhin Y, Running SW, Nemani RR, Wan Z, Huete AR, van Leeuwen W, Giglio RE, Muller J-P, Lewis P, Barnsley MJ (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36(4):1228–1249ADSCrossRefGoogle Scholar
  11. Justice CO, Giglio L, Roy D, Boschetti L, Csiszar I, Davies D, Korontzi S, Schroeder W, O’Neal K MODIS-Derived Global Fire Products ( Chapter 29 in this volume)
  12. Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002b) An overview of MODIS land data processing and product status. Remote Sens Environ 83:3–15CrossRefGoogle Scholar
  13. Lutz R, Roy D, Leff C, Lewicki S, Geir E, Ziskin D, Kilpatrick K, Chu A, (2000) A review of EOS Terra quality assessment (QA). Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, 24–28 July (CD-ROM INT_27_06.pdf, 0-7803-6362-0/00 (c) 2000 IEEE)Google Scholar
  14. Morisette JT et al. (2006) Validation of global moderate resolution LAI products: a framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans Geosci Remote Sens 44(7):1804–1817ADSGoogle Scholar
  15. Morisette JT, Giglio L, Csiszar I, Justice CO (2005a) Validation of the MODIS active fire product over Southern Africa with ASTER data. Int J Remote Sens 26(19):4239–4264CrossRefGoogle Scholar
  16. Morisette JT, Giglio L, Csiszar I, Setzer A, Schroeder W, Morton D, Justice CO (2005b) Validation of MODIS active fire detection products derived from two algorithms. Earth Interaction 9:paper 9.Google Scholar
  17. Morisette JT, Giglio L, Csiszar I, Setzer A, Schroeder W, Morton D, Justice CO (2004) LBA Eco LC23 ASTER – MODIS Fire Data Comparison – Brazil 2003 & 2004. Data set. Available online Oak Ridge, TennesseeGoogle Scholar
  18. Morisette JT, Giglio L, Csiszar I, Justice CO (2003) SAFARI 2000 ASTER and MODIS Fire Data Comparison. Dry Season 2001. (Data set) Available online ( from Oak Ridge National Laboratory Distributed Active Archive Center. Oak Ridge, Tennessee
  19. Morisette JT, Privette JL, Justice CO (2002) A framework for the validation of MODIS Land products. Remote Sens Environ 83:77–96CrossRefGoogle Scholar
  20. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  21. Nickeson JE, Morisette JT, Privette JL, Justice CO, Wickland D, 2007. Coordinating EOS land validation: core site status in 2006. EOS, Transactions American Geophysical Union 88(7). doi:10.1029/2007EO070002Google Scholar
  22. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473ADSCrossRefGoogle Scholar
  23. Roy DP, Borak JS, Devadiga S, Wolfe RE, Descloitres J (2002) The MODIS land product quality assessment approach. Remote Sens Environ 83:62–76CrossRefGoogle Scholar
  24. Running SW, Justice CO, Salomonson VV, Hall D, Barker J, Kaufman YJ, Strahler AR, Muller J-P, Vanderbilt V, Wan ZM, Teillet P, Carneggie D (1994) Terrestrial remote sensing science and algorithms planned for the MODIS-EOS. Int J Remote Sens 15(17):3587–3620CrossRefGoogle Scholar
  25. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens 27:145–153ADSCrossRefGoogle Scholar
  26. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R, Hu B, Liang S, Privette JL (2002) First operational BRDF, Albedo and Nadir reflectance products from MODIS. Remote Sens Environ 83:135–148CrossRefGoogle Scholar
  27. Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111CrossRefGoogle Scholar
  28. Wan Z, Zhang Y, Zhang Q, Li Z (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Image Spectroradiometer data. Remote Sens Environ 83:163–180CrossRefGoogle Scholar
  29. Wolfe RE, Roy DP, Vermote E (1998) MODIS land data storage, gridding and compositing methodology: Level 2 Grid. IEEE Trans Geosci Remote Sens 36:1324–1338ADSCrossRefGoogle Scholar
  30. Yang W, Tan B, Huang D, Rautiainien M, Shabanov NV, Wang Y, Privette JL, Huemmrich KF, Fensholt R, Sandholt I, Weiss M, Ahl DE, Gower ST, Nemani RR, Knyazikhin Y, Myneni RB (2006) MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans Geosci Remote Sens 44(7):1885–1898ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Edward Masuoka
    • 1
    Email author
  • David Roy
  • Robert Wolfe
  • Jeffery Morisette
  • Scott Sinno
  • Michael Teague
  • Nazmi Saleous
  • Sadashiva Devadiga
  • Christopher O. Justice
  • Jaime Nickeson
  1. 1.Terrestrial Information Systems BranchNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations