ASTER Imaging and Analysis of Glacier Hazards

  • Jeffrey KargelEmail author
  • Roberto Furfaro
  • Georg Kaser
  • Gregory Leonard
  • Wolfgang Fink
  • Christian Huggel
  • Andreas Kääb
  • Bruce Raup
  • John Reynolds
  • David Wolfe
  • Marco Zapata
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


Most scientific attention to glaciers, including ASTER and other satellite-derived applications in glacier science, pertains to their roles in the following seven functions: (1) as signposts of climate change (Kaser et al. 1990; Williams and Ferrigno 1999, 2002; Williams et al. 2008; Kargel et al. 2005; Oerlemans 2005), (2) as natural reservoirs of fresh water (Yamada and Motoyama 1988; Yang and Hu 1992; Shiyin et al. 2003; Juen et al. 2007), (3) as contributors to sea-level change (Arendt et al. 2002), (4) as sources of hydropower (Reynolds 1993); much work also relates to the basic science of glaciology, especially (5) the physical phenomeno­logy of glacier flow processes and glacier change (DeAngelis and Skvarca 2003; Berthier et al. 2007; Rivera et al. 2007), (6) glacial geomorphology (Bishop et al. 1999, 2003), and (7) the technology required to acquire and analyze satellite images of glaciers (Bishop et al. 1999, 2000, 2003, 2004; Quincey et al. 2005, 2007; Raup et al. 2000, 2006ab; Khalsa et al. 2004; Paul et al. 2004a, b). These seven functions define the important areas of glaciological science and technology, yet a more pressing issue in parts of the world is the direct danger to people and infrastructure posed by some glaciers (Trask 2005; Morales 1969; Lliboutry et al. 1977; Evans and Clague 1988; Xu and Feng 1989; Reynolds 1993, 1998, 1999; Yamada and Sharma 1993; Hastenrath and Ames 1995; Mool 1995; Ames 1998; Chikita et al. 1999; Williams and Ferrigno 1999; Richardson and Reynolds 2000a, b; Zapata 2002; Huggel et al. 2002, 2004; Xiangsong 1992; Kääb et al. 2003, 2005, 2005c; Salzmann et al. 2004; Noetzli et al. 2006).


Debris Flow Geographic Information System Lake Level Gravitational Potential Energy Lake Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ames A (1998) A documentation of glacier tongue variations and lake development in the Cordillera Blanca, Perú. Z Gletsch Glazialgeol 34:1–36Google Scholar
  2. Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–385ADSCrossRefGoogle Scholar
  3. Baker DN, Worden SP (2008) The large benefits of small-satellite missions. EOS Trans Am Geophys Union 89(33):301–302ADSCrossRefGoogle Scholar
  4. Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon, P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108:327–338CrossRefGoogle Scholar
  5. Bhattacharya S (2003) Glacier crack places Peruvian city in peril. New Sci.
  6. Bishop MP, Shroder JF Jr, Hickman BL (1999) SPOT panchromatic imagery and neural networks for information extraction in a complex mountain environment. Geocarto Int 14(2):19–28CrossRefGoogle Scholar
  7. Bishop MP, Kargel J, Kieffer H, MacKinnon DJ, Raup BH, Shroder JF (2000) Remote sensing science and technology for studying glacier processes in high Asia. Ann Glaciol 31:164–170ADSCrossRefGoogle Scholar
  8. Bishop MP, Shroder JF Jr, Colby JD (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 55:345–361ADSCrossRefGoogle Scholar
  9. Bishop MP, Barry RG, Bush ABG, Copeland L, Dwyer JL, Fountain AG, Haeberli W, Hall DK, Kääb A, Kargel JS, Molnia BF, Olsenholler JA, Paul F, Raup BH, Shroder JF, Trabant DC, Wessels R (2004) Global Land Ice Measurements from Space (GLIMS): remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto Int 19(2):57–85CrossRefGoogle Scholar
  10. Carey M (2005) Living and dying with glaciers: peoples’ historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change 47:122–134MathSciNetADSCrossRefGoogle Scholar
  11. Chikita K, Jha J, Yamada T (1999) Hydrodynamics of a supraglacial lake and its effect on the basin expansion: Tsho Rolpa, Rolwaling Valley, Nepal Himalaya. Arctic Antarctic Alpine Res 31:58–70CrossRefGoogle Scholar
  12. DeAngelis H, Skvarca P (2003) Glacier surge after ice shelf collapse. Science 299:1560–1562ADSCrossRefGoogle Scholar
  13. Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. In: Bonnard C (ed) Landslides – Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, pp 1153–1158Google Scholar
  14. Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10(1–4):107–128ADSCrossRefGoogle Scholar
  15. Farber DL, Hancock G (2005) Uplift and topography formation in the Cordillera Blanca, Central Peruvian Andes. Eur Geosci Union Geophys Res Abstr 7:10374Google Scholar
  16. Fink W, Datta A, Baker V (2005) AGFA: (Airborne) automated geologic field analyzer. Geochim Cosmochim Acta 69(10S):A535ADSGoogle Scholar
  17. Fink W, Datta A, Dohm JM, Tarbell MA, Jobling FM, Furfaro R, Kargel JS, Schulze-Makuch D, Baker V (2008) Automated global feature analyzer (AGFA) – a driver for tier-scalable reconnaissance. In: IEEE Aerospace Conference Proceedings, paper no. 1273, Big Sky, MontanaGoogle Scholar
  18. Furfaro R, Dohm JM, Fink W (2006) Fuzzy logic expert system for tier-scalable planetary reconnaissance. In: Ninth International Conference on Space Operations, AIAA, Rome, Italy, June 19–23, 2006Google Scholar
  19. Furfaro R, Dohm JM, Fink W, Kargel JS, Schulze-Makuch D, Fairén AG, Ferré PT, Palmero-Rodriguez A, Baker VR, Hare TM, Tarbell M, Miyamoto HH, Komatsu G (2008a) The search for life beyond earth through fuzzy expert systems. Planet Space Sci 56:448–472ADSCrossRefGoogle Scholar
  20. Furfaro R, Lunine J, Kargel JS, Fink W (2008b) Intelligent systems for the autonomous exploration of titan and enceladus. In: Space Exploration Technology Conference, Proceedings of the SPIE, Orlando, FL, March 2008Google Scholar
  21. Garver JI, Schiffman CR, Perry SE (2003) Rapid tectonic exhumation of the Cordillera Blanca. In: Annual Meeting, Geological Society of America, Seattle, November 2–5, 2003, Abstract no. 169-9Google Scholar
  22. Georges C (2004) 20th-century glacier fluctuations in the Tropical Cordillera Blanca, Peru. Arctic Antarctic Alpine Res 36(1):100–107CrossRefGoogle Scholar
  23. Georges C (2005) Recent glacier fluctuations in the tropical Cordillera Blanca and aspects of the climate forcing. Ph.D. Dissertation, Leopold-Franzens-UniversitätGoogle Scholar
  24. Haritashya UK, Singh P, Kumar N, Gupta RP (2006) Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature. J Hydrol 321:116–130CrossRefGoogle Scholar
  25. Hastenrath S, Ames A (1995) Recession of Yanamarey Glacier in Cordillera Blanca, Perú, during the 20th century. J Glaciol 41:191–196Google Scholar
  26. Hubbard B,, Heald A, Reynolds JM, Quincey D, Richardson SD, Zapata M, Santillan N, Hambrey MJ (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264ADSCrossRefGoogle Scholar
  27. Huggel C, Delgado H (2000) Glacier monitoring at Popocatépetl volcano, México: glacier shrinkage and possible causes. In: Hegg C, Vonder Muhl D (eds) Beitrage zur Geomorphologie. Proceedings der Fachtagung der Schweizerischen Geomorphologischen Gesellschaft, Bramois, WSL Birmensdorf, pp 97–106Google Scholar
  28. Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Satellite and aerial imagery for analysing high mountain lake hazards. Can Geotech J 39(2):316–330CrossRefGoogle Scholar
  29. Huggel C, Kääb A, Haeberli W (2003) Regional-scale models of debris flows triggered by lake outbursts: the June 25, 2001 debris flow at Täsch (Switzerland) as a test study. In: Rickenmann D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 1151–1162Google Scholar
  30. Huggel C, Kääb A, Salzmann N (2004) GIS-based modeling of glacial hazards and their interactions using Landsat TM and Ikonos imagery. Norwegian J Geogr 58:61–73Google Scholar
  31. Juen I, Kaser G, Georges C (2007) Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global Planet Change 59:37–48ADSCrossRefGoogle Scholar
  32. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94:463–474CrossRefGoogle Scholar
  33. Kääb A, The GAPHAZ Working Group (2006) Towards a set of general recommendations for assessing glacier and permafrost hazards in mountains. Geophys Res Abstr 8:04608, SRef-ID: 1607-7962/gra/EGU06-A-04608Google Scholar
  34. Kääb A, Wessels R, Haeberli W, Huggel C, Kargel J, Khalsa SJS (2003) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS Trans Am Geophys Union 84(13):117–121ADSCrossRefGoogle Scholar
  35. Kääb A, Reynolds JM, Haeberli W (2005) Glacier and permafrost hazards in high mountains. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions (a state of knowledge overview). Advances in Global Change Research. Springer, Dordrecht, pp 225–234Google Scholar
  36. Kargel JS, Abrams MJ, Bishop MP, Bush A, Hamilton G, Jiskoot H, Kääb A, Kieffer HH, Lee EM, Paul F, Rau F, Raup B, Shroder JF, Soltesz DL, Stearns L, Wessels R (2005) Multispectral imaging contributions to Global Land Ice Measurements from Space. Remote Sens Environ 99:187–219CrossRefGoogle Scholar
  37. Kaser G, Georges C (2003) A potential disaster in the Icy Andes: a regrettable blunder. University of Innsbruck, Austria. Available online:
  38. Kaser G, Ames A, Zamora M (1990) Glacier fluctuations and climate in the Cordillera Blanca, Peru. Ann Glaciol 14:136–140ADSGoogle Scholar
  39. Kattelmann R (2003) Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Nat Hazards 28:145–154CrossRefGoogle Scholar
  40. Khalsa SJS, Dyurgerov MB, Khromova T, Raup BH, Barry RG (2004) Space-based mapping of glacier changes using ASTER and GIS tools. IEEE Trans Geosci Remote Sens 42:2177–2183ADSCrossRefGoogle Scholar
  41. Kinzl H (1941) Die Andenkundfahrt des Deutschen Alpenvereins nach Peru im Jahr 1939. Zeitschrift des Deutschen Alpenvereins. MünchenGoogle Scholar
  42. Klimes J, Vilímek V, Zapata M, Santilán N (2005) Influence of rapid glacial tongue retreat on a surface area of the glacial lakes in the Cordillera Blanca, Peru. Geophys Res Abstr 7:06767, SRef-ID: 1607-7962/gra/EGU05-A-06767Google Scholar
  43. Lliboutry LA, Morales Arnao B, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Perú, I: Historical failures of morainic dams, their causes and prevention. J Glaciol 18(79):239–254Google Scholar
  44. Mamdani EH (1977) Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comp 26(12):1182–1191zbMATHCrossRefGoogle Scholar
  45. Mark BG (2002) Observations of modern deglaciation and hydrology in the Cordillera Blanca. Acta Montana A Geodynamica 19(123):23–36Google Scholar
  46. Montario MJ (2001) Exhumation of the Cordillera Blanca, Northern Peru, based on apatite fission track analysis. Unpublished Thesis, Department of Geology, Union CollegeGoogle Scholar
  47. Mool PK (1995) Glacier lake outburst floods in Nepal. J Nepal Geol Soc 11:273–280Google Scholar
  48. Morales B (1969) Las lagunas y glaciares de la Cordillera Blanca y sucontrol. Revista Peruana de Andinismo y Glaciologica 8:76–79Google Scholar
  49. Morales Arnao B (1998) Desglaciación y disminución de recursoshídricos. Bol Soc Geogr Lima 111:7–20Google Scholar
  50. Noetzli J, Huggel C, Hoelzle M, Haeberli W (2006) GIS-based modelling of rock-ice avalanches from Alpine permafrost areas. Comput Geosci 10:161–178. DOI 10.1007/s10596-005-9017zzbMATHCrossRefGoogle Scholar
  51. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677ADSCrossRefGoogle Scholar
  52. Ojeda N (1974) Consolidacion laguna Palcacocha. Electroperu, Huarás 42 ppGoogle Scholar
  53. Paul F, Huggel C, Kääb A (2004a) Mapping of debris-covered glaciers using multispectral and DEM classification techniques. Remote Sens Environ 89(4):510–518CrossRefGoogle Scholar
  54. Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004b) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402. DOI 10.1029/2004GL020816ADSCrossRefGoogle Scholar
  55. Portocarrero C (1995) Retroceso de glaciares en el Perú: consecuencias sobre los recursos hídricos y los riesgos geodinámicos. Bull Inst Fr Etudes Andines 24(3):697–706Google Scholar
  56. Quincey DJ, Lucas RM, Richardson SD, Glasser NF, Hambrey MJ, Reynolds JM (2005) Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progr Phys Geogr 29(4):475–505CrossRefGoogle Scholar
  57. Quincey DJ, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet Change 56:137–152ADSCrossRefGoogle Scholar
  58. Racoviteanu A, Arnaud Y (2005) The 2003 SPOT5-derived glacier inventory for Cordillera Blanca, Peru: A contribution to the GLIMS Geospatial Glacier Database. Abstract for the New Zealand GLIMS WorkshopGoogle Scholar
  59. Rana B, Shrestha AB, Reynolds JM, Aryal R, Pokhrel AP, Budhathoki KP (2000) Hazard assessment of the Tsho Rolpa Glacier Lake and ongoing remediation measures. J Nepal Geol Soc 22:563–570Google Scholar
  60. Raup B, Kieffer H, Hare T, Kargel J (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target. IEEE Trans Geosci Remote Sens 38:1105–1112ADSCrossRefGoogle Scholar
  61. Raup B, Kääb A, Kargel JS, Bishop MP, Hamilton G, Lee E, Paul F, Rau F, Soltesz D, Khalsa SJS, Beedle M, Helm C (2006a) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput Geosci. DOI 10.1016/j.cageo.2006.05.015Google Scholar
  62. Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R and Arnaud Y (2006b) The GLIMS Geospatial Glacier Database: a new tool for studying glacier change. Global Planet Change 56(1–2):101–110ADSGoogle Scholar
  63. Reynolds JM (1993) The development of a combined regional strategy for power generation and natural hazard risk assessment in a high-altitude glacial environment: an example from the Cordillera Blanca, Peru. In: Merriman PA, Browitt CWA (eds) Natural disasters: protecting vulnerable communities. Thomas Telford, London, pp 38–50Google Scholar
  64. Reynolds JM (1998) Managing the risks of glacial flooding at hydro plants. Hydro Rev Worldwide 6 (2):18–22Google Scholar
  65. Reynolds JM (1999) Photographic feature: Glacial hazard assessment at Tsho Rolpa, Rolwaling, Central Nepal. Q J Eng Geol 32(3):209–214CrossRefGoogle Scholar
  66. Reynolds JM, Dolecki A, Portocarrero C (1998) The construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Cordillera Blanca, Peru. In: Maund J, Eddleston M (eds) Geohazards in engineering geology, vol. 15. Geological Society Engineering Group Special Publication, London, pp 41–48Google Scholar
  67. Richardson SD, Reynolds JM (2000a) Degradation of ice-cored moraine dams: Implications for hazard development. In: Nakawo M, Raymond CF, Fountain A (eds) Debris-covered glaciers, vol. 264. International Association of Hydrological Sciences Publication, Seattle, WA, pp 187–197Google Scholar
  68. Richardson SD, Reynolds JM (2000b) An overview of glacial hazards in the Himalayas. Q Int 65–66:31–47CrossRefGoogle Scholar
  69. Rivera A, Benham T, Casassa G, Bamber J, Dowdeswell JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global Planet Change 59:126–137ADSCrossRefGoogle Scholar
  70. Ross TJ (2004) Fuzzy logic with engineering applications, 2nd edn. Wiley, Hoboken, NJzbMATHGoogle Scholar
  71. Salzmann N, Kääb A, Huggel C, Allgöwer B (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling. Norwegian J Geogr 58:74–84Google Scholar
  72. Shiyin L, Wenxin S, Yongping S, Gang L (2003) Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J Glaciol 49:117–124CrossRefGoogle Scholar
  73. Silverio W, Jaquet J-M (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ 95:342–350CrossRefGoogle Scholar
  74. State of Alaska (2007) All-hazard risk mitigation plan, p. 91, October 2007.
  75. Steitz DE and Buis A (2003) Peril in Peru? NASA takes a look at menacing glacier. NASA Press Release 03-138, April 11, 2003. See also and,OrigCaption
  76. Thorarinsson S (1939) The ice-dammed lakes of Iceland, with particular reference to their value as indicators of glacier oscillations. Geogr Ann 21:216–242Google Scholar
  77. Trask PD (1953) El problema de los aluviones de la Cordillera Blanca. Bol Soc Geogr Lima 70:1–75Google Scholar
  78. Wessels R, Kargel JS, Kieffer HH (2002) ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Ann Glaciol 34:399–408ADSCrossRefGoogle Scholar
  79. Williams RS, Ferrigno JG (1999) Glacier Hazards. In: Glaciers of South America, vol. I.
  80. Williams RS, Ferrigno JG (eds) (2002) Glaciers of North America (vol. J) and other volumes in the series Satellite Image Atlas of Glaciers of the World, U.S. Geological Survey Prof. Paper 1386-J, p. 405, and other volumes in Prof. Paper 1386. U.S. Government Printing Office, Washington, DCGoogle Scholar
  81. Williams RS, Ferrigno JG (eds), Contributing Authors (2008, estimated publication) Introduction (volume A) to series, Satellite Image Atlas of the Glaciers of the World, U.S. Geological Survey Professional Paper 1386-A (State of the Earth’s Cryosphere at the Beginning of the 21st Century): Glaciers, Snow Cover, Floating Ice, and PermafrostGoogle Scholar
  82. Willis IC, Richards KS, Sharp MJ (1996) Links between proglacial stream-suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway. Hydrological Processes 10:629–648ADSCrossRefGoogle Scholar
  83. Wolfe DFG (2009) Glacier dammed lakes impacting different Alaskan drainages after 30 years. In: American Water Resources Association Spring Specialty Conference, Extended Abstracts, AnchorageGoogle Scholar
  84. Xiangsong Z (1992) Investigation of glacier bursts of the Yarkant River in Xinjiang, China. Ann Glaciol 16:135–139Google Scholar
  85. Xu D, Feng Q (1989) Characteristics of dangerous glacier lakes and their outburst, Tibet, Himalaya Mountain. Acta Geogr Sinica 44 (4):343–345MathSciNetGoogle Scholar
  86. Yamada T, Motoyama H (1988) Contribution of glacier meltwater to runoff in glacierized watersheds in the Langtang Valley, Nepal Himalayas. Bull Glacier Res 6:65–74Google Scholar
  87. Yamada T, Sharma CK (1993) Glacier lakes and outburst floods in the Nepal Himalaya. Int Assoc Hydrol Sci Publ 218:319–330Google Scholar
  88. Yang Z, Hu X (1992) Study of glacier meltwater resources in China. In: Hooke RL (ed) Symposium on mountain glaciology Lanzhou, Gansu Province, China, 26–30 August 1991. Proc Ann Glaciol 16:141–145Google Scholar
  89. Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca. Acta Montana A Geodynamica 19(123):23–36Google Scholar
  90. Zapata ML, Gómez RJL, Rapre AC, Santillán NP, Montalvo CA, Lizarme GG (2004) Memoria Annual 2003. INRENA, Huarás, 170 ppGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeffrey Kargel
    • 1
    Email author
  • Roberto Furfaro
  • Georg Kaser
  • Gregory Leonard
  • Wolfgang Fink
  • Christian Huggel
  • Andreas Kääb
  • Bruce Raup
  • John Reynolds
  • David Wolfe
  • Marco Zapata
  1. 1.Department of Hydrology & Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations