Mitochondria on Guard: Role of Mitochondrial Fusion and Fission in the Regulation of Apoptosis

  • Mariusz Karbowski
Part of the Advances in Experimental Medicine and Biology book series (volume 687)


Mitochondria are highly dynamic organelles that constantly change shape and structure in response to different stimuli and metabolic demands of the cell. Mitochondrial structure in the cell is predominantly regulated by cycles of fusion and fission. These two processes are tightly regulated and under physiological conditions, mitochondrial fusion is evenly counterbalanced by fission. During apoptosis, mitochondria undergo extensive fragmentation, which precedes caspase activation, whereas inhibition of the mitochondrial fission machinery blocks or delays cell death. Aberrant mitochondrial fusion and fission have also emerged as important mechanisms in the development of disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malka F, Guillery O, Cifuentes-Diaz C et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep 2005; 6:853–859.CrossRefPubMedGoogle Scholar
  2. 2.
    Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro. Science 2004; 305:1747–1752.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen H, Detmer SA, Ewald AJ et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003; 160:189–200.CrossRefPubMedGoogle Scholar
  4. 4.
    Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004; 117:6535–6546.CrossRefPubMedGoogle Scholar
  5. 5.
    Koshiba T, Detmer SA, Kaiser JT et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 2004; 305:858–862.CrossRefPubMedGoogle Scholar
  6. 6.
    Neuspiel M, Zunino R, Gangaraju S et al. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation and reduces susceptibility to radical induced depolarization. J Biol Chem 2005; 280:25060–25070.CrossRefPubMedGoogle Scholar
  7. 7.
    Karbowski M, Arnoult D, Chen H et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 2004; 164:493–499.CrossRefPubMedGoogle Scholar
  8. 8.
    Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26:207–210.CrossRefPubMedGoogle Scholar
  9. 9.
    Olichon A, Baricault L, Gas N et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003; 278:7743–7746.CrossRefPubMedGoogle Scholar
  10. 10.
    Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8:870–879.CrossRefPubMedGoogle Scholar
  11. 11.
    Guillery O, Malka F, Landes T et al. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell 2008; 100:315–325.CrossRefPubMedGoogle Scholar
  12. 12.
    Eura Y, Ishihara N, Oka T et al. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 2006; 119:4913–4925.CrossRefPubMedGoogle Scholar
  13. 13.
    Choi SY, Huang P, Jenkins GM et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 2006; 8:1255–1262.CrossRefPubMedGoogle Scholar
  14. 14.
    Hajek P, Chomyn A, Attardi G. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 2007; 282:5670–5681.CrossRefPubMedGoogle Scholar
  15. 15.
    Da Cruz S, Parone PA, Gonzalo P et al. SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability. Biochim Biophys Acta 2008; 1783:904–911.PubMedGoogle Scholar
  16. 16.
    Cipolat S, Rudka T, Hartmann D et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126:163–175.CrossRefPubMedGoogle Scholar
  17. 17.
    Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 2007; 178:757–764.CrossRefPubMedGoogle Scholar
  18. 18.
    Song Z, Chen H, Fiket M et al. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential and Yme1L. J Cell Biol 2007; 178:749–755.CrossRefPubMedGoogle Scholar
  19. 19.
    Ishihara N, Fujita Y, Oka T et al. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 2006; 25:2966–2977.CrossRefPubMedGoogle Scholar
  20. 20.
    Duvezin-Caubet S, Koppen M, Wagener J et al. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 2007; 18:3582–3590.CrossRefPubMedGoogle Scholar
  21. 21.
    Smirnova E, Griparic L, Shurland DL et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001; 12:2245–2256.PubMedGoogle Scholar
  22. 22.
    Stojanovski D, Koutsopoulos OS, Okamoto K et al. Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 2004; 117:1201–1210.CrossRefPubMedGoogle Scholar
  23. 23.
    Yoon Y, Krueger EW, Oswald BJ et al. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 2003; 23:5409–5420.CrossRefPubMedGoogle Scholar
  24. 24.
    James DI, Parone PA, Mattenberger Y et al. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003; 278:36373–36379.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee YJ, Jeong SY, Karbowski M et al. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1 and Opa1 in apoptosis. Mol Biol Cell 2004; 15:5001–5011.CrossRefPubMedGoogle Scholar
  26. 26.
    Chang CR, Blackstone C. Drp1 phosphorylation and mitochondrial regulation. EMBO Rep 2007; 8:1088–1089; author reply 1089–1090.CrossRefPubMedGoogle Scholar
  27. 27.
    Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004; 14:340–345.PubMedGoogle Scholar
  28. 28.
    Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 2007; 178:71–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 2008; 19:1903–1911.CrossRefPubMedGoogle Scholar
  30. 30.
    Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007; 8:939–944.CrossRefPubMedGoogle Scholar
  31. 31.
    Han XJ, Lu YF, Li SA et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008; 182:573–585.CrossRefPubMedGoogle Scholar
  32. 32.
    Taguchi N, Ishihara N, Jofuku A et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007; 282:11521–11529.CrossRefPubMedGoogle Scholar
  33. 33.
    Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 2008; 19:2402–2412.CrossRefPubMedGoogle Scholar
  34. 34.
    Yonashiro R, Ishido S, Kyo S et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 2006; 25:3618–3626.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakamura N, Kimura Y, Tokuda M et al. MARCH-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 2006; 7:1019–1022.CrossRefPubMedGoogle Scholar
  36. 36.
    Braschi E, Zunino R, McBride HM. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 2009; 10:748–754.CrossRefPubMedGoogle Scholar
  37. 37.
    Zunino R, Schauss A, Rippstein P et al. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 2007; 120:1178–1188.CrossRefPubMedGoogle Scholar
  38. 38.
    Poole AC, Thomas RE, Andrews LA et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 2008; 105:1638–1643.CrossRefPubMedGoogle Scholar
  39. 39.
    Yang Y, Ouyang Y, Yang L et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 2008; 105:7070–7075.CrossRefPubMedGoogle Scholar
  40. 40.
    Nakada K, Inoue K, Ono T et al. Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 2001; 7:934–940.CrossRefPubMedGoogle Scholar
  41. 41.
    Varadi A, Johnson-Cadwell LI, Cirulli V et al. Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J Cell Sci 2004; 117:4389–4400.CrossRefPubMedGoogle Scholar
  42. 42.
    Twig G, Elorza A, Molina AJ et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008; 27:433–446.Google Scholar
  43. 43.
    Breckenridge DG, Kang BH, Kokel D et al. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol Cell 2008; 31:586–597.CrossRefPubMedGoogle Scholar
  44. 44.
    Benard G, Bellance N, James D et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007; 120:838–848.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005; 280:26185–26192.CrossRefPubMedGoogle Scholar
  46. 46.
    Tondera D, Grandemange S, Jourdain A et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 2009; 28:1589–1600.CrossRefPubMedGoogle Scholar
  47. 47.
    Davies VJ, Hollins AJ, Piechota MJ et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 2007; 16:1307–1318.CrossRefPubMedGoogle Scholar
  48. 48.
    Ishihara N, Nomura M, Jofuku A et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 2009, doi:10.1038/ncb1907.Google Scholar
  49. 49.
    Waterham HR, Koster J, van Roermund CW et al. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 2007; 356:1736–1741.CrossRefPubMedGoogle Scholar
  50. 50.
    Frank S, Gaume B, Bergmann-Leitner ES et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001; 1:515–525.CrossRefPubMedGoogle Scholar
  51. 51.
    Jagasia R, Grote P, Westermann B et al. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 2005; 433:754–760.CrossRefPubMedGoogle Scholar
  52. 52.
    Goyal G, Fell B, Sarin A et al. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 2007; 12:807–816.CrossRefPubMedGoogle Scholar
  53. 53.
    Yamaguchi R, Lartigue L, Perkins G et al. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis and independent of Bak oligomerization. Mol Cell 2008; 31:557–569.CrossRefPubMedGoogle Scholar
  54. 54.
    Brooks C, Wei Q, Feng L et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 2007; 104:11649–11654.CrossRefPubMedGoogle Scholar
  55. 55.
    Arnoult D, Gaume B, Karbowski M et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 2003; 22:4385–4399.CrossRefPubMedGoogle Scholar
  56. ai]56.
    Sun MG, Williams J, Munoz-Pinedo C et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol 2007; 9:1057–1065.CrossRefPubMedGoogle Scholar
  57. 57.
    John GB, Shang Y, Li L et al. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 2005; 16:1543–1554.CrossRefPubMedGoogle Scholar
  58. 58.
    Li H, Chen Y, Jones AF et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 2008; 105:2169–2174.CrossRefPubMedGoogle Scholar
  59. 59.
    Liu QA, Shio H. Mitochondrial morphogenesis, dendrite development and synapse formation in cerebellum require both BCL-2 and the glutamate receptor delta2. PLoS Genet 2008; 4:e1000097.CrossRefPubMedGoogle Scholar
  60. 60.
    Shroff EH, Snyder CM, Budinger GR et al. BH3 peptides induce mitochondrial fission and cell death independent of BAX/BAK. PLoS One 2009; 4:e5646.CrossRefPubMedGoogle Scholar
  61. 61.
    Karbowski M, Norris KL, Cleland MM et al. Role of Bax and Bak in mitochondrial morphogenesis. Nature 2006; 443:658–662.CrossRefPubMedGoogle Scholar
  62. 62.
    Norris KL, Youle RJ. Cytomegalovirus proteins vMIA and m38.5 link mitochondrial morphogenesis to BCL-2 family proteins. J Virol 2008; 82:6232–6243.CrossRefPubMedGoogle Scholar
  63. 63.
    Karbowski M, Lee YJ, Gaume B et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1 and Mfn2 during apoptosis. J Cell Biol 2002; 159:931–938.CrossRefPubMedGoogle Scholar
  64. 64.
    Wasiak S, Zunino R, McBride HM: Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177:439–450.CrossRefPubMedGoogle Scholar
  65. 65.
    Cassidy-Stone A, Chipuk JE, Ingerman E et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 2008; 14:193–204.CrossRefPubMedGoogle Scholar
  66. 66.
    Parone PA, James DI, Da Cruz S et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 2006; 26:7397–7408.CrossRefPubMedGoogle Scholar
  67. 67.
    Brooks C, Wei Q, Cho SG et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 2009; 119:1275–1285.CrossRefPubMedGoogle Scholar
  68. 68.
    Sugioka R, Shimizu S, Tsujimoto Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 2004; 279:52726–52734.CrossRefPubMedGoogle Scholar
  69. 69.
    Berman SB, Chen Y-b, Qi B et al. Bcl-xL increases mitochondrial fission, fusion and biomass in neurons. J Cell Biol 2009; 184:10.1083/jcb.200809060.CrossRefGoogle Scholar
  70. 70.
    Tan FJ, Husain M, Manlandro CM et al. CED-9 and mitochondrial homeostasis in C. elegans muscle. J Cell Sci 2008; 121:3373–3382.CrossRefPubMedGoogle Scholar
  71. 71.
    Breckenridge DG, Kang BH, Xue D. BCL-2 proteins EGL-1 and CED-9 do not regulate mitochondrial fission or fusion in Caenorhabditis elegans. Curr Biol 2009; 19:768–773.CrossRefPubMedGoogle Scholar
  72. 72.
    Delivani P, Adrain C, Taylor RC et al. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion. Mol Cell 2006; 21:761–773.CrossRefPubMedGoogle Scholar
  73. 73.
    Sheridan C, Delivani P, Cullen SP et al. Bax-or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 2008; 31:570–585.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Mariusz Karbowski
    • 1
  1. 1.Medical Biotechnology CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations