The Cardiac Atlas Project: Towards a Map of the Heart

  • Michael Backhaus
  • Jae Do Chung
  • Brett R. Cowan
  • Carissa G. Fonseca
  • Wenchao Tao
  • Alistair A. Young


Although much is known about the pathophysiological cellular processes ­underlying heart disease, little is known about how the heart remodels structurally and ­functionally during the development of disease, and how particular presentations of disease fit into the spectrum of functional manifestations across patient groups. If clinicians were able to map the structure and function of the heart in a standard way, they would be able to characterize a particular patient’s function with the range of functional characteristics derived from large populations of patients. This would enable more precise quantification of the type and severity of disease, as well as more robust measures of evaluation of the effects of treatment.


Cardiovascular Magnetic Resonance Late Gadolinium Enhancement Regional Wall Motion Cardiovascular Magnetic Resonance Image XPath Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ABI Physiome Home Page. Available at
  2. 2.
    AMRG Cardiac Atlas (SCMR). Available at
  3. 3.
    Biomedical Informatics Research Network Home Page. Available at
  4. 4.
    Bioportal 2.0 Home Page. Available at
  5. 5.
    Cancer Biomedical Informatics Grid Home Page. Available at
  6. 6.
    Cardiac Gene Expression Home Page. Available at
  7. 7.
    Cardiovascular Research Grid Home Page. Available at Accessed August 1, 2009
  8. 8.
    Center for Computational Biology Home Page. Available at
  9. 9.
    cmGUI Home Page. Available at
  10. 10.
    The DCM4CHE Open Source PACS Home Page. Available at
  11. 11.
    Foundational Model of Anatomy Home Page Available at
  12. 12.
    Informatics for Integrating Biology and Bedside Home Page. Available at
  13. 13.
    Information Artifact Ontology Project Page. Available at
  14. 14.
    Integrativebiology Project Home Page. Available at
  15. 15.
    International Consortium for Brain Mapping Available at
  16. 16.
    JBoss Application Server. Available at
  17. 17.
    LONI De-identification Debablet. Available at
  18. 18.
    Medical Image File Archive Project Home Page. Available at
  19. 19.
    OWL Web Ontology Language. Available at
  20. 20.
    PhysioNet Home Page. Available at
  21. 21.
    Radlex RSNA Page. Available at
  22. 22.
    Systems Biology Ontology Home Page. Available at
  23. 23.
    WebProtégé Home Page. Available at
  24. 24.
    Amanda R: Towards semantic interoperability in healthcare: ontology mapping from SNOMED-CT to HL7 version 3. Hobart: Australian Computer Society, Inc., 2006Google Scholar
  25. 25.
    Augenstein KF, Young AA: Finite element modeling for three-dimensional motion reconstruction and analysis. Dordrecht: Kluwer Academic, 2001Google Scholar
  26. 26.
    Bild DE, et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156:871–881, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Bottini PB, Carr AA, Prisant LM, Flickinger FW, Allison JD, Gottdiener JS: Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228, 1995PubMedCrossRefGoogle Scholar
  28. 28.
    Burek P, Hoehndorf R, Loebe F, Visagie J, Herre H, Kelso J: A top-level ontology of functions and its application in the Open Biomedical Ontologies. Bioinformatics 22:e66–73, 2006PubMedCrossRefGoogle Scholar
  29. 29.
    Cootes TF, Hill A, Taylor CF, Halsam J: The use of active shape models for locating structures in medical images. Image Vis Comput 12:355–366, 1994CrossRefGoogle Scholar
  30. 30.
    Fonseca CG, Oxenham HC, Cowan BR, Occleshaw CJ, Young AA: Aging alters patterns of regional nonuniformity in LV strain relaxation: a 3-D MR tissue tagging study. Am J Physiol Heart Circ Physiol 285:H621–630, 2003PubMedGoogle Scholar
  31. 31.
    Fung YC: Foundations of solid mechanics. Englewood Cliffs: Prentice Hall, 1965Google Scholar
  32. 32.
    Grenander U, Miller MI: Computational anatomy: an emerging discipline. Q J Appl Math 56:627–694, 1998Google Scholar
  33. 33.
    Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 274:H1627–1634, 1998PubMedGoogle Scholar
  34. 34.
    James JC, Terry FH, Olivier B, Brian D, Grace AS, Martin R: The caBIG terminology review process. J Biomed Inform 42:571–580, 2009CrossRefGoogle Scholar
  35. 35.
    Kadish AH, et al.: Rationale and design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) trial. J Cardiovasc Electrophysiol 20:982–987, 2009PubMedCrossRefGoogle Scholar
  36. 36.
    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH: Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000PubMedCrossRefGoogle Scholar
  37. 37.
    Kim RJ, et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453, 2000PubMedCrossRefGoogle Scholar
  38. 38.
    Kundu S, et al.: The IR Radlex Project: an interventional radiology lexicon--a collaborative project of the Radiological Society of North America and the Society of Interventional Radiology. J Vasc Interv Radiol 20:S275–277, 2009PubMedCrossRefGoogle Scholar
  39. 39.
    Myerson SG, Bellenger NG, Pennell DJ: Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39:750–755, 2002PubMedCrossRefGoogle Scholar
  40. 40.
    Oshinski JN, Yang Z, Jones JR, Mata JF, French BA: Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842, 2001PubMedCrossRefGoogle Scholar
  41. 41.
    Panting JR, et al.: Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953, 2002PubMedCrossRefGoogle Scholar
  42. 42.
    Pattynama PM, De Roos A, Van der Wall EE, Van Voorthuisen AE: Evaluation of cardiac function with magnetic resonance imaging. Am Heart J 128:595–607, 1994PubMedCrossRefGoogle Scholar
  43. 43.
    Philip MP: Building cyber-infrastructure for the biomedical informatics research network. Washington, DC: IEEE Computer Society, 2006Google Scholar
  44. 44.
    Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM: Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105:224–229, 2002PubMedCrossRefGoogle Scholar
  45. 45.
    Reichek N: Magnetic resonance imaging for assessment of myocardial function. Magn Reson Q 7:255–274, 1991PubMedGoogle Scholar
  46. 46.
    Remme EW, Young AA, Augenstein KF, Cowan B, Hunter PJ: Extraction and quantification of left ventricular deformation modes. IEEE Trans Biomed Eng 51:1923–1931, 2004PubMedCrossRefGoogle Scholar
  47. 47.
    Scollan DF, Holmes A, Winslow R, Forder J: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275:H2308–2318, 1998PubMedGoogle Scholar
  48. 48.
    Wagner A, et al.: Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379, 2003PubMedCrossRefGoogle Scholar
  49. 49.
    Washington N, et al.: NLP and Phenotypes: using Ontologies to link Human Diseases to Animal Models. Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2008Google Scholar
  50. 50.
    Yang TH, et al.: A scalable multi-tier architecture for the National Taiwan University Hospital Information System based on HL7 Standard. Washington, DC: IEEE Computer Society, 2006Google Scholar
  51. 51.
    Young AA, Axel L: Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization – a model-based approach. Radiology 185:241–247, 1992PubMedGoogle Scholar
  52. 52.
    Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216:597–602, 2000PubMedGoogle Scholar
  53. 53.
    Young AA, et al.: Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. J Cardiovasc Magn Reson 8:685–692, 2006PubMedCrossRefGoogle Scholar
  54. 54.
    Young AA, Kraitchman DL, Dougherty L, Axel L: Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans Med Imaging 14:413–421, 1995PubMedCrossRefGoogle Scholar
  55. 55.
    Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N: Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867, 1994PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael Backhaus
  • Jae Do Chung
  • Brett R. Cowan
  • Carissa G. Fonseca
  • Wenchao Tao
  • Alistair A. Young
    • 1
  1. 1.Department of Anatomy with RadiologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations