Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics



Human life evolved in the presence of oxygen, and even small alterations to this essential element can trigger a cascade of biological events. Conditions affecting how we metabolize oxygen and respond to hypoxia determine whether we thrive or succumb to disease. Physiological processes such as exercise, aging, hormonal cycle, and wound healing depend on genetic, epigenetic, and protein level changes in hypoxic response. Furthermore, all leading causes of death in the USA involve hypoxia and alter the microvasculature, through increases or decreases in the degree of angiogenesis (i.e., the growth capillaries from preexisting blood vessels). Patient variability – both in physiological and pathological conditions – determines how a given individual will respond to hypoxic exposure, and therapies targeting hypoxic pathways. The degree and breadth of patient variability is so wide regarding oxygen sensing and response, that computational modeling has become necessary to capture its complexity.


Nitric Oxide Vascular Endothelial Growth Factor Vascular Endothelial Growth Factor Expression Vascular Endothelial Growth Factor Level Hypoxic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agani, F. H., Puchowicz, M., Chavez, J. C., Pichiule, P. & Lamanna, J. (2002) Role of nitric oxide in the regulation of HIF-1alpha expression during hypoxia. Am J Physiol Cell Physiol, 283, C178–86.PubMedGoogle Scholar
  2. 2.
    Airley, R. E. & Mobasheri, A. (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy, 53, 233–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Alqawi, O., Moghaddas, M. & Singh, G. (2006) Effects of geldanamycin on HIF-1alpha mediated angiogenesis and invasion in prostate cancer cells. Prostate Cancer Prostatic Dis, 9, 126–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Amalinei, C., Caruntu, I. D. & Balan, R. A. (2007) Biology of metalloproteinases. Rom J Morphol Embryol, 48, 323–34.PubMedGoogle Scholar
  5. 5.
    Arany, Z. (2008) PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev, 18, 426–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Arany, Z., Foo, S. Y., Ma, Y., Ruas, J. L., Bommi-Reddy, A., Girnun, G., Cooper, M., Laznik, D., Chinsomboon, J., Rangwala, S. M., Baek, K. H., Rosenzweig, A. & Spiegelman, B. M. (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451, 1008–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Archer, S. L., Gomberg-Maitland, M., Maitland, M. L., Rich, S., Garcia, J. G. & Weir, E. K. (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol, 294, H570–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Bailey, A. M., Thorne, B. C. & Peirce, S. M. (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng, 35, 916–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Bentley, K., Mariggi, G., Gerhardt, H. & Bates, P. A. (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol, 5, e1000549.PubMedCrossRefGoogle Scholar
  10. 10.
    Brahimi-Horn, M. C. & Pouyssegur, J. (2007) Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol, 73, 450–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks, J. T., Elvidge, G. P., Glenny, L., Gleadle, J. M., Liu, C., Ragoussis, J., Smith, T. G., Talbot, N. P., Winchester, L., Maxwell, P. H. & Robbins, P. A. (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol, 106, 212–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Brune, B. & Zhou, J. (2003) The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem, 10, 845–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Bryan, B. A., Walshe, T. E., Mitchell, D. C., Havumaki, J. S., Saint-Geniez, M., Maharaj, A. S., Maldonado, A. E. & D’Amore, P. A. (2008) Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell, 19, 994–1006.PubMedCrossRefGoogle Scholar
  14. 14.
    Callapina, M., Zhou, J., Schmid, T., Kohl, R. & Brune, B. (2005) NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic Biol Med, 39, 925–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Chaplain, M. A., McDougall, S. R. & Anderson, A. R. (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng, 8, 233–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, K., Pittman, R. N. & Popel, A. S. (2007) Vascular smooth muscle NO exposure from intraerythrocytic SNOHb: a mathematical model. Antioxid Redox Signal, 9, 1097–110.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, K. & Popel, A. S. (2006) Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med, 41, 668–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, K. & Popel, A. S. (2007) Vascular and perivascular nitric oxide release and transport: Biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3). Free Radic Biol Med, 42, 811–22.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Angelo, G., Duplan, E., Boyer, N., Vigne, P. & Frelin, C. (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem, 278, 38183–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Das, B., Yeger, H., Tsuchida, R., Torkin, R., Gee, M. F., Thorner, P. S., Shibuya, M., Malkin, D. & Baruchel, S. (2005) A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res, 65, 7267–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Deonikar, P. & Kavdia, M. (2009) An integrated computational and experimental model of nitric oxide-red blood cell interactions. Ann Biomed Eng, 38, 357–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Freeman, R. S. & Barone, M. C. (2005) Targeting hypoxia-inducible factor (HIF) as a therapeutic strategy for CNS disorders. Curr Drug Targets CNS Neurol Disord, 4, 85–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Galanis, A., Pappa, A., Giannakakis, A., Lanitis, E., Dangaj, D. & Sandaltzopoulos, R. (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett, 266, 12–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., Bhujwalla, Z. M., Felsher, D. W., Cheng, L., Pevsner, J., Lee, L. A., Semenza, G. L. & Dang, C. V. (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12, 230–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Garcia, J. A. (2006) HIFing the brakes: therapeutic opportunities for treatment of human malignancies. Sci STKE, 2006, pe25.PubMedCrossRefGoogle Scholar
  26. 26.
    Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M. & Yan, Z. (2010) PGC-1{alpha} plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol, 298, C572–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldman, D. (2008) Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 15, 795–811.PubMedCrossRefGoogle Scholar
  28. 28.
    Gottlieb, E. & Tomlinson, I. P. (2005) Mitochondrial tumour suppressors: a genetic and ­biochemical update. Nat Rev Cancer, 5, 857–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Guerreiro-Lucas, L. A., Pop, S. R., Machado, M. J., Ma, Y. L., Waters, S. L., Richardson, G., Saetzler, K., Jensen, O. E. & Mitchell, C. A. (2008) Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus. Microvasc Res, 76, 161–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Guzy, R. D. & Schumacker, P. T. (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol, 91, 807–19.PubMedCrossRefGoogle Scholar
  31. 31.
    Herr, B., Zhou, J., Drose, S. & Brune, B. (2007) The interaction of superoxide with nitric oxide destabilizes hypoxia-inducible factor-1alpha. Cell Mol Life Sci, 64, 3295–305.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoenig, M. R., Bianchi, C. & Sellke, F. W. (2008) Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr Drug Targets, 9, 422–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Jensen, F. B. (2009) The dual roles of red blood cells in tissue oxygen delivery: oxygen ­carriers and regulators of local blood flow. J Exp Biol, 212, 3387–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Ji, J. W., Mac Gabhann, F. & Popel, A. S. (2007) Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol Heart Circ Physiol, 293, H3740–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Ji, J. W., Tsoukias, N. M., Goldman, D. & Popel, A. S. (2006) A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol, 241, 94–108.PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol, 271, C1172–80.PubMedGoogle Scholar
  37. 37.
    Jones, N. M., Lee, E. M., Brown, T. G., Jarrott, B. & Beart, P. M. (2006) Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neurosci Lett, 404, 72–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Khanna, S., Roy, S., Maurer, M., Ratan, R. R. & Sen, C. K. (2006) Oxygen-sensitive reset of hypoxia-inducible factor transactivation response: prolyl hydroxylases tune the biological normoxic set point. Free Radic Biol Med, 40, 2147–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Kozhukhar, A. V., Yasinska, I. M. & Sumbayev, V. V. (2006) Nitric oxide inhibits HIF-1alpha protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie, 88, 411–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Krogh, A. (1919) The supply of oxygen to the tissues and the regulation of the capillary ­circulation. J Physiol, 52, 457–74.PubMedGoogle Scholar
  41. 41.
    Kut, C., Mac Gabhann, F. & Popel, A. S. (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer, 97, 978–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Li, Z., Wang, D., Messing, E. M. & Wu, G. (2005) VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep, 6, 373–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Lopez-Lazaro, M. (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett, 252, 1–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Lopez-Torres, M. & Barja, G. (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta, 1780, 1337–47.PubMedCrossRefGoogle Scholar
  45. 45.
    Mac Gabhann, F., Ji, J. W. & Popel, A. S. (2007) Multi-scale computational models of ­pro-angiogenic treatments in peripheral arterial disease. Ann Biomed Eng, 35, 982–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Mac Gabhann, F. & Popel, A. S. (2004) Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Physiol Heart Circ Physiol, 286, H153–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Mac Gabhann, F. & Popel, A. S. (2005) Differential binding of VEGF isoforms to VEGF Receptor 2 in the presence of Neuropilin-1: a computational model. Am J Physiol Heart Circ Physiol, 288, H2851–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Mac Gabhann, F. & Popel, A. S. (2006) Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches. PLoS Comput Biol, 2, e180.PubMedCrossRefGoogle Scholar
  49. 49.
    Mac Gabhann, F. & Popel, A. S. (2007) Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys Chem, 128, 125–39.PubMedCrossRefGoogle Scholar
  50. 50.
    Mac Gabhann, F. & Popel, A. S. (2007) Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol, 292, H459–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Mac Gabhann, F. & Popel, A. S. (2008) Systems biology of vascular endothelial growth factors. Microcirculation, 15, 715–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Mac Gabhann, F., Yang, M. T. & Popel, A. S. (2005) Monte Carlo simulations of VEGF binding to cell surface receptors in vitro. Biochim Biophys Acta, 1746, 95–107.PubMedCrossRefGoogle Scholar
  53. 53.
    Matouk, I. J., Mezan, S., Mizrahi, A., Ohana, P., Abu-Lail, R., Fellig, Y., Degroot, N., Galun, E. & Hochberg, A. (2010) The oncofetal H19 RNA connection: Hypoxia, p53 and cancer. Biochim Biophys Acta, 1803, 443–51.PubMedCrossRefGoogle Scholar
  54. 54.
    Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R. & Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Menyhard, D. K. (2009) Comparative computational analysis of active and inactive cofactors of nitric oxide synthase. J Phys Chem B, 113, 3151–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Mikirova, N. A., Casciari, J. J. & Riordan, N. H. (2010) Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivo. J Angiogenes Res, 2, 2.PubMedCrossRefGoogle Scholar
  57. 57.
    Miquel, J. (2002) Can antioxidant diet supplementation protect against age-related mitochondrial damage? Ann N Y Acad Sci, 959, 508–16.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Hagan, K. A., Cocchiglia, S., Zhdanov, A. V., Tambuwala, M. M., Cummins, E. P., Monfared, M., Agbor, T. A., Garvey, J. F., Papkovsky, D. B., Taylor, C. T. & Allan, B. B. (2009) PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A, 106, 2188–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Oda, S., Oda, T., Nishi, K., Takabuchi, S., Wakamatsu, T., Tanaka, T., Adachi, T., Fukuda, K., Semenza, G. L. & Hirota, K. (2008) Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One, 3, e2215.PubMedCrossRefGoogle Scholar
  60. 60.
    Pan, Y., Mansfield, K. D., Bertozzi, C. C., Rudenko, V., Chan, D. A., Giaccia, A. J. & Simon, M. C. (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol, 27, 912–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Pathak, A. P., Ward, B. D. & Schmainda, K. M. (2008) A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage, 40, 1130–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Pfafflin, A., Brodbeck, K., Heilig, C. W., Haring, H. U., Schleicher, E. D. & Weigert, C. (2006) Increased glucose uptake and metabolism in mesangial cells overexpressing glucose transporter 1 increases interleukin-6 and vascular endothelial growth factor production: role of AP-1 and HIF-1alpha. Cell Physiol Biochem, 18, 199–210.PubMedCrossRefGoogle Scholar
  63. 63.
    Pouyssegur, J. & Mechta-Grigoriou, F. (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem, 387, 1337–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Powell, F. L. (2003) Functional genomics and the comparative physiology of hypoxia. Annu Rev Physiol, 65, 203–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Qutub, A., Gabhann, F., Karagiannis, E., Vempati, P. & Popel, A. (2009) Multiscale models of angiogenesis. IEEE Eng Med Biol Mag, 28, 14–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Qutub, A. & Popel, A. (2008) Reactive oxygen species regulate hypoxia-inducible factor HIF1alpha differentially in cancer and ischemia. Mol Cell Biol, 28, 5106–19.PubMedCrossRefGoogle Scholar
  67. 67.
    Qutub, A. A., Liu, G., Vempati, P. & Popel, A. S. (2009) Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pac Symp Biocomput, 316–27.Google Scholar
  68. 68.
    Qutub, A. A. & Popel, A. S. (2006) A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci, 119, 3467–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Qutub, A. A. & Popel, A. S. (2007) Three autocrine feedback loops determine HIF1 alpha expression in chronic hypoxia. Biochim Biophys Acta, 1773, 1511–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Qutub, A. A. & Popel, A. S. (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol, 3, 13.PubMedCrossRefGoogle Scholar
  71. 71.
    Rajah, T. T. & Grammas, P. (2002) VEGF and VEGF receptor levels in retinal and brain-derived endothelial cells. Biochem Biophys Res Commun, 293, 710–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Rendon, B. E., Willer, S. S., Zundel, W. & Mitchell, R. A. (2009) Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol, 86, 180–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Salnikow, K., Aprelikova, O., Ivanov, S., Tackett, S., Kaczmarek, M., Karaczyn, A., Yee, H., Kasprzak, K. S. & Niederhuber, J. (2008) Regulation of hypoxia-inducible genes by ETS1 transcription factor. Carcinogenesis, 29, 1493–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Schmidt, C., Bezuidenhout, D., Beck, M., Van der Merwe, E., Zilla, P. & Davies, N. (2009) Rapid three-dimensional quantification of VEGF-induced scaffold neovascularisation by microcomputed tomography. Biomaterials, 30, 5959–68.PubMedCrossRefGoogle Scholar
  75. 75.
    Schultz, A., Lavie, L., Hochberg, I., Beyar, R., Stone, T., Skorecki, K., Lavie, P., Roguin, A. & Levy, A. P. (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation, 100, 547–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Semenza, G. L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med, 8, S62–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Semenza, G. L. (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda), 19, 176–82.CrossRefGoogle Scholar
  78. 78.
    Semenza, G. L. (2006) Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets, 10, 267–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Semenza, G. L. (2009) Regulation of vascularization by hypoxia-inducible factor 1. Ann N Y Acad Sci, 1177, 2–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sharp, F. R., Ran, R., Lu, A., Tang, Y., Strauss, K. I., Glass, T., Ardizzone, T. & Bernaudin, M. (2004) Hypoxic preconditioning protects against ischemic brain injury. Neurorx, 1, 26–35.PubMedCrossRefGoogle Scholar
  81. 81.
    Sluimer, J. C. & Daemen, M. J. (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol, 218, 7–29.PubMedCrossRefGoogle Scholar
  82. 82.
    Sluimer, J. C., Gasc, J. M., Van Wanroij, J. L., Kisters, N., Groeneweg, M., Sollewijn Gelpke, M. D., Cleutjens, J. P., Van den Akker, L. H., Corvol, P., Wouters, B. G., Daemen, M. J. & Bijnens, A. P. (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol, 51, 1258–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. (2008) The human side of hypoxia-inducible factor. Br J Haematol, 141, 325–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Smith, T. G., Talbot, N. P., Privat, C., Rivera-Ch, M., Nickol, A. H., Ratcliffe, P. J., Dorrington, K. L., Leon-Velarde, F. & Robbins, P. A. (2009) Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA, 302, 1444–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Stiehl, D. P., Wirthner, R., Koditz, J., Spielmann, P., Camenisch, G. & Wenger, R. H. (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem, 281, 23482–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Taylor, C. T. (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J, 409, 19–26.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsoukias, N. M., Goldman, D., Vadapalli, A., Pittman, R. N. & Popel, A. S. (2007) A ­computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. J Theor Biol, 248, 657–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Van Faassen, E. E., Bahrami, S., Feelisch, M., Hogg, N., Kelm, M., Kim-Shapiro, D. B., Kozlov, A. V., Li, H., Lundberg, J. O., Mason, R., Nohl, H., Rassaf, T., Samouilov, A., Slama-Schwok, A., Shiva, S., Vanin, A. F., Weitzberg, E., Zweier, J. & Gladwin, M. T. (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev, 29, 683–741.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 92, 5510–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Wellman, T. L., Jenkins, J., Penar, P. L., Tranmer, B., Zahr, R. & Lounsbury, K. M. (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. FASEB J, 18, 379–81.PubMedGoogle Scholar
  91. 91.
    Xing, G., Qualls, C., Huicho, L., Rivera-Ch, M., Stobdan, T., Slessarev, M., Prisman, E., Ito, S., Wu, H., Norboo, A., Dolma, D., Kunzang, M., Norboo, T., Gamboa, J. L., Claydon, V. E., Fisher, J., Zenebe, G., Gebremedhin, A., Hainsworth, R., Verma, A. & Appenzeller, O. (2008) Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One, 3, e2342.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., Dang, C. V. & Semenza, G. L. (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Bioengineering, BioSciences Research CollaborativeRice UniversityHoustonUSA

Personalised recommendations