Activation of Ubiquitin and Ubiquitin-Like Proteins

  • Frederick C. StreichJr.
  • Arthur L. HaasEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 54)


Attachment of ubiquitin and ubiquitin-like proteins to cellular targets represents a fundamental regulatory strategy within eukaryotes and exhibits remarkably pleiotropic effects on cell function. These posttranslational modifications share a common mechanism comprised of three steps: an activating enzyme to couple ATP hydrolysis to formation of a high-energy intermediate at the carboxyl terminus of ubiquitin or the ubiquitin-like protein, a ligase to couple aminolysis of the activated polypeptide to formation of the new peptide bond and a carrier protein to link the two half reactions. The activating enzymes play pivotal roles in defining pathway specificity for ubiquitin or the ubiquitin-like protein and for target protein specificity in charging the cognate carrier protein supporting downstream ligation steps. Therefore, the family of activating enzymes are critical components of cell regulation that have only recently been recognized as important pharmacological targets.


Saccharomyces Cerevisiae Cell Regulation Critical Component Pleiotropic Effect Peptide Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373–428.PubMedGoogle Scholar
  2. 2.
    Hicke L. Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999; 9:107–112.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen ZJ. Ubiquitin signaling in the NF-κB Pathway. Nat Cell Biol 2005; 7:758–765.PubMedCrossRefGoogle Scholar
  4. 4.
    Spencer VA, Davie JR. Role of covalent modifications of histones in regulating gene expression. Gene 1999; 240:1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Muratori M, Marchiani S, Criscuoli L et al. Biological meaning of ubiquitination and DNA fragmentation in human spermatozoa. Soc Reprod Fertil Suppl 2007; 63:153–158.PubMedGoogle Scholar
  6. 6.
    Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22:159–180.PubMedCrossRefGoogle Scholar
  7. 7.
    Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature 2009; 458:422–429.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciechanover A, Ben-Saadon R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 2003; 14:103–106.CrossRefGoogle Scholar
  9. 9.
    Williams C, van den BM, Sprenger RR et al. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 2007; 282:22534–22543.PubMedCrossRefGoogle Scholar
  10. 10.
    Herr RA, Harris J, Fang S et al. Role of the RING-CH domain of viral ligase mK3 in ubiquitination of nonlysine and lysine MHC I residues. Traffic 2009; 10:1301–1317.PubMedCrossRefGoogle Scholar
  11. 11.
    Arnez JG, Moras D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 1997; 22:211–216.PubMedCrossRefGoogle Scholar
  12. 12.
    Haas AL, Siepmann TJ. Pathways of ubiquitin conjugation. FASEB J 1997; 11:1257–1268.PubMedGoogle Scholar
  13. 13.
    Haas AL, Warms JV, Rose IA. Ubiquitin adenylate: Structure and role in ubiquitin activation. Biochemistry 1983; 22:4388–4394.PubMedCrossRefGoogle Scholar
  14. 14.
    Burch TJ, Haas AL. Site-directed mutagenesis of ubiquitin. Differential roles for arginine in the interaction with ubiquitin-activating enzyme. Biochemistry 1994; 33:7300–7308.PubMedCrossRefGoogle Scholar
  15. 15.
    Haas AL, Warms JV, Hershko A et al. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 1982; 257:2543–2548.PubMedGoogle Scholar
  16. 16.
    Haas AL, Rose IA. The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 1982; 257:10329–10337.PubMedGoogle Scholar
  17. 17.
    Haas AL, Bright PM. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J Biol Chem 1988; 263:13258–13267.PubMedGoogle Scholar
  18. 18.
    Pickart CM, Rose IA. Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem 1985; 260:1573–1581.PubMedGoogle Scholar
  19. 19.
    Lake MW, Wuebbens MM, Rajagopalan KV et al. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 2001; 414:325–329.PubMedCrossRefGoogle Scholar
  20. 20.
    Duda DM, Walden H, Sfondouris J et al. Structural analysis of Escherichia Coli ThiF. J Mol Biol 2005; 349:774–786.PubMedCrossRefGoogle Scholar
  21. 21.
    Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like ß-grasp domains. Genome Biol 2006; 7:R60.PubMedCrossRefGoogle Scholar
  22. 22.
    Rudolph MJ, Wuebbens MM, Rajagopalan KV et al. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 2001; 8:42–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Regni CA, Roush RF, Miller DJ et al. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. EMBO J 2009; 28:1953–1964.PubMedCrossRefGoogle Scholar
  24. 24.
    Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319–331.PubMedCrossRefGoogle Scholar
  25. 25.
    Siepmann TJ, Bohnsack RN, Tokgöz Z et al. Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 2003; 278:9448–9457.PubMedCrossRefGoogle Scholar
  26. 26.
    Bohnsack RN, Haas AL. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem 2003; 278:26823–26830.PubMedCrossRefGoogle Scholar
  27. 27.
    Haas AL. ISG15-dependent regulation. In: Mayer RJ, Ciechanover A, Rechsteiner M, eds. Protein Degradation. Weinheim, Germany: Wiley-VCH Verlag, 2006:103–131.CrossRefGoogle Scholar
  28. 28.
    Haas AL. Immunochemical probes of ubiquitin pool dynamics. In: Rechsteiner M, ed. Ubiquitin. New York: Plenum Press, 1988;173–206.Google Scholar
  29. 29.
    Walden H, Podgorski MS, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NED 8. Nature 2003; 422:330–334.PubMedCrossRefGoogle Scholar
  30. 30.
    Walden H, Podgorski MS, Huang DT et al. The structure of the APPBP1-UBA3-NED 8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 2003; 12:1427–1437.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang DT, Hunt HW, Zhuang M et al. Basis for a ubiquitin-like protein thioester switch toggling E1-E 2 affinity. Nature 2007; 445:394–398.PubMedCrossRefGoogle Scholar
  32. 32.
    Lois LM, Lima CD. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 2005; 24:439–451.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 2008; 134:268–278.PubMedCrossRefGoogle Scholar
  34. 34.
    Kumar S, Yoshida Y, Noda M. Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun 1993; 195:393–399.PubMedCrossRefGoogle Scholar
  35. 35.
    Whitby FG, Xia G, Pickart CM et al. Crystal structure of the human ubiquitin-like protein NED 8 and interactions with ubiquitin pathway enzymes. J Biol Chem 1998; 273:34983–34991.PubMedCrossRefGoogle Scholar
  36. 36.
    Lehmann C, Begley TP, Ealick SE. Structure of the Escherichia coli ThiS-T hiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 2006; 45:11–19.PubMedCrossRefGoogle Scholar
  37. 37.
    Taylor SV, Kelleher NL, Kinsland C et al. Thiamin biosynthesis in Escherichia coli. Identification of This thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem 1998; 273:16555–16560.PubMedCrossRefGoogle Scholar
  38. 38.
    Handley-Gearhart PM, Stephen AG, Trausch-Azar JS et al. Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem 1994; 269:33171–33178.PubMedGoogle Scholar
  39. 39.
    Dohmen RJ, Stappen R, McGrath JP et al. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 1995; 270:18099–18109.PubMedCrossRefGoogle Scholar
  40. 40.
    Tokgöz Z, Bohnsack RN, Haas AL. Pleiotropic effects of ATPMg2+ binding in the catalytic cycle of ubiquitin activating enzyme. J Biol Chem 2006; 281:14729–14737.PubMedCrossRefGoogle Scholar
  41. 41.
    Wolfenden R. Thermodynamic and extrathermodynamic requirements of enzyme catalysis. Biophys Chem 2003; 105:559–572.PubMedCrossRefGoogle Scholar
  42. 42.
    Pickart CM, Kasperek EM, Beal R et al. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J Biol Chem 1994; 269:7115–7123.PubMedGoogle Scholar
  43. 43.
    Zdebska E, Antoniewicz J, Nilsson B et al. Ganglioside binding proteins of calf brain with ubiquitin-like N-terminals. Eur J Biochem 1992; 210:483–489.PubMedCrossRefGoogle Scholar
  44. 44.
    Beal R, Deveraux Q, Xia G et al. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc Natl Acad Sci U.S.A 1996; 93:861–866.PubMedCrossRefGoogle Scholar
  45. 45.
    Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 1987; 194:531–544.PubMedCrossRefGoogle Scholar
  46. 46.
    Haas AL, Murphy KE, Bright PM. The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts. J Biol Chem 1985; 260:4694–4703.PubMedGoogle Scholar
  47. 47.
    Jonnalagadda S, Ecker DJ, Sternberg EJ et al. Ubiquitin carboxyl-terminal peptides. Substrates for ubiquitin activating enzyme. J Biol Chem 1988; 263:5016–5019.PubMedGoogle Scholar
  48. 48.
    Ecker DJ, Butt TR, Marsh J et al. Gene synthesis, expression, structures and functional activities of site-specific mutants of ubiquitin. J Biol Chem 1987; 262:14213–14221.PubMedGoogle Scholar
  49. 49.
    Souphron J, Waddell MB, Paydar A et al. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NED 8’s E1. Biochemistry 2008; 47:8961–8969.PubMedCrossRefGoogle Scholar
  50. 50.
    Cook WJ, Jeffrey LC, Kasperek E et al. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J Mol Biol 1994; 236:601–609.PubMedCrossRefGoogle Scholar
  51. 51.
    Kang RS, Daniels CM, Francis SA et al. Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding. Cell 2003; 113:621–630.PubMedCrossRefGoogle Scholar
  52. 52.
    Prag G, Lee S, Mattera R et al. Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, γ-ear-containing, ADP-ribosylation-factor-binding proteins. Proc Natl Acad Sci USA 2005; 102:2334–2339.PubMedCrossRefGoogle Scholar
  53. 53.
    Swanson KA, Kang RS, Stamenova SD et al. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J 2003; 22:4597–4606.PubMedCrossRefGoogle Scholar
  54. 54.
    Lo YC, Lin SC, Rospigliosi CC et al. Structural Basis for Recognition of Diubiquitins by NEMO. Mol Cell 2009; 33:605–615.CrossRefGoogle Scholar
  55. 55.
    Lee S, Tsai YC, Mattera R et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 2006; 13:264–271.PubMedCrossRefGoogle Scholar
  56. 56.
    Bayer P, Arndt A, Metzger S et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 1998; 280:275–286.PubMedCrossRefGoogle Scholar
  57. 57.
    Hatfield PM, Vierstra RD. Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis. J Biol Chem 1992; 267:14799–14803.PubMedGoogle Scholar
  58. 58.
    Huang DT, Paydar A, Zhuang M et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NED 8’s E1. Mol Cell 2005; 17:341–350.PubMedCrossRefGoogle Scholar
  59. 59.
    Durfee LA, Kelley ML, Huibregtse JM. The basis for selective E1-E 2 interactions in the ISG15 conjugation system. J Biol Chem 2008; 283:23895–23902.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang J, Hu W, Cai S et al. The Intrinsic Affinity between E2 and the Cys Domain of E1 in Ubiquitin-like Modifications. Mol Cell 2007; 27:228–237.PubMedCrossRefGoogle Scholar
  61. 61.
    Soucy TA, Smith PG, Milhollen MA et al. An inhibitor of NED 8-activating enzyme as a new approach to treat cancer. Nature 2009; 458:732–736.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology School of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations