Advertisement

Microwave Effect on Clay Pillaring

Chapter

Abstract

Pillared clays may be prepared in presence of microwave irradiation as it has been extensively used in organic chemistry syntheses. Preparation time of the conventional intercalating solution takes about 2 days, but only 15 min when the preparation mixture is microwave-irradiated. The amount of water required to disperse and to dilute the pillar precursor salts is also significantly reduced. In this work, the properties of the pillared clays prepared in presence of microwave irradiation are compared to those prepared by the conventional way. Their performance as catalysts or as adsorbents is discussed.

Keywords

Clays Montmorillonite Pillars Microwave irradiation Microporous Ion exchange Adsorption Catalysis Aluminosilicate 

Notes

Acknowledgments

This work was developed in the frame of a sabbatical visit of G. Fetter to the Instituto de Investigaciones en Materiales, UNAM. The financial support of CONACYT is gratefully recognized.

References

  1. 1.
    Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Cat Rev Sci Eng 50:153CrossRefGoogle Scholar
  2. 2.
    Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Cat Rev Sci Eng 42:145CrossRefGoogle Scholar
  3. 3.
    Kloprogge JT (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5:5CrossRefGoogle Scholar
  4. 4.
    Figueras F (1988) Pillared clays as catalysts. Cat Rev Sci Eng 30:457CrossRefGoogle Scholar
  5. 5.
    Singh V, Sapehiyia V, Srivastava V, Kaur S (2006) ZrO2-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal Comm 7:571CrossRefGoogle Scholar
  6. 6.
    Gyftopoulou ME, Millan M, Bridgwater AV, Dugwell D, Kandiyoti R, Hriljac JA (2005) Pillared clays as catalysts for hydrocracking of heavy liquid fuels. Appl Catal A 282:205CrossRefGoogle Scholar
  7. 7.
    Pichat P, Khalaf H, Tabet D, Houari M, Saisi M (2005) Ti-montmorillonite as photocatalyst to remove 4-chlorophenol in water and methanol in air. Environ Chem Lett 2:191CrossRefGoogle Scholar
  8. 8.
    Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22CrossRefGoogle Scholar
  9. 9.
    Mott CJB (1988) Pillared Clays. Burch R (ed) Catal Today 2:199Google Scholar
  10. 10.
    Vicente MA, Bañares-Muñoz MA, Toranzo R, Gandía LM, Gil A (2001) Influence of the Ti precursor on the properties of Ti-pillared smectites. Clay Miner 36:125CrossRefGoogle Scholar
  11. 11.
    Belver C, Bañares-Muñoz MA, Vicente MA (2004) Fe-saponite pillared and impregnated catalysts I. Preparation and characterisation. Appl Catal B 50:101CrossRefGoogle Scholar
  12. 12.
    Kloprogge JT, Booy E, Jansen JBH, Geus JW (1994) Synthesis of Al-pillared beidellite and its catalytic activity in the hydroconversion of n-heptane. Catal Lett 29:293CrossRefGoogle Scholar
  13. 13.
    Miehe-Brendle J, Khouchaf L, Baron J, Le Dred R, Tuilier M-H (1997) Zr-exchanged and pillared beidellite: preparation and characterization by chemical analysis, XRD and Zr K EXAFS. Micropor Mater 11:171CrossRefGoogle Scholar
  14. 14.
    Gangas NHJ, Van Wonterghem J, Mörup S, Koch CJW (1985) Magnetic bridging in nontronite by intercalated iron. J Phys C: Solid State Phys 18:L1011CrossRefGoogle Scholar
  15. 15.
    De Bock M, Maes N, Cool P, Heylen I, Vansant EF (1996) Theoretical evaluation of pillared clay adsorbents: part III: the total porosity and the macrostructure of Al-pillared montmorillonite and hectorite. J Porous Mater 3:207CrossRefGoogle Scholar
  16. 16.
    Bergaya F, Hassoun N, Barrault J, Gatineau L (1993) Pillaring of synthetic hectorite by mixed [Al13-xFex] pillars. Clay Miner 28:109CrossRefGoogle Scholar
  17. 17.
    Fetter G, Heredia G, Velázquez LA, Maubert AM, Bosch P (1997) Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions. Appl Catal A 162:41CrossRefGoogle Scholar
  18. 18.
    Storaro L, Lenarda M, Perissinotto M, Lucchini V, Ganzerla R (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays. Micropor Mesopor Mater 20:317CrossRefGoogle Scholar
  19. 19.
    Aouad A, Mandalia T, Bergaya F (2005) A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Appl Clay Sci 28:175CrossRefGoogle Scholar
  20. 20.
    Houari M, Saidi M, Tabet D, Pichat P, Khalaf H (2005) The removal of 4-chlorophenol and dichloroacetic acid in water using Ti-, Zr- and Ti/Zr-pillared bentonites as photocatalyst. Am J Appl Sci 2:1136CrossRefGoogle Scholar
  21. 21.
    Warrier KGK, Mukundan P, Ghosh SK, Sivakumar S, Damodaran AD (1994) Microwave drying of boehmite sol intercalated smectites. J Mater Sci 29:3415CrossRefGoogle Scholar
  22. 22.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882CrossRefGoogle Scholar
  23. 23.
    Sun S, Jiang Y, Yu L, Li F, Yang Z, Hou T, Hu D, Xia M (2006) Enhanced photocatalytic activity of microwave treated TiO2 pillared montmorillonite. Mater Chem Phys 98:377CrossRefGoogle Scholar
  24. 24.
    Singh V, Sapehiyia V, Lal Kad G (2004) Ultrasound and microwave activated preparation of ZrO2-pillared clay composite: catalytic activity for selective, solventless acylation of 1,n-diols. J Molec Catal A 210:119CrossRefGoogle Scholar
  25. 25.
    Fetter G, Heredia G, Maubert AM, Bosch P (1996) Synthesis of Al-intercalated montmorillonites using microwave irradiation. J Mater Chem 6:1857CrossRefGoogle Scholar
  26. 26.
    De Andrés AM, Merino J, Galván JC, Ruiz-Hitzky E (1999) Synthesis of pillared clays assisted by microwaves. Mater Res Bull 34:641CrossRefGoogle Scholar
  27. 27.
    Fetter G, Hernández V, Rodríguez V, Valenzuela MA, Lara VH, Bosch P (2003) Effect of microwave irradiation time on the synthesis of zirconia-pillared clays. Mater Lett 57:1220CrossRefGoogle Scholar
  28. 28.
    Figueras F, Mattrod-Bashi A, Fetter G, Thrierr A, Zanchetta JV (1989) Preparation and thermal-properties of Zr-intercalated clays. J Catal 119:91CrossRefGoogle Scholar
  29. 29.
    Yamanaka S, Brindley GW (1979) High surface-area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays Clay Miner 27:119CrossRefGoogle Scholar
  30. 30.
    Martínez-Ortiz MJ, Fetter G, Domínguez JM, Melo-Banda JA, Ramos-Gómez R (2003) Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods. Micropor Mesopor Mater 58:73CrossRefGoogle Scholar
  31. 31.
    Lin J-T, Jong S-J, Cheng S (1993) A new method for preparing microporous titanium pillared clays. Micropor Mater 1:287CrossRefGoogle Scholar
  32. 32.
    Kooli F, Bovey J, Jones W (1997) Dependence of the properties of titanium-pillared clays on the host matrix: a comparison of montmorillonite, saponite and rectorite pillared materials. J Mater Chem 7:153CrossRefGoogle Scholar
  33. 33.
    Arfaoui J, Boudali LK, Ghorbel A (2006) Vanadia-doped titanium-pillared clay: preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol. Catal Commun 7:86CrossRefGoogle Scholar
  34. 34.
    Jagtap N, Ramaswamy V (2006) Oxidation of aniline over titania pillared montmorillonite clays. Appl Clay Sci 33:89CrossRefGoogle Scholar
  35. 35.
    Fetter G, Salas P, Velazquez LA, Bosch P (2000) Ce-Al-Pillared clays: synthesis, characterization, and catalytic performance. Ind Eng Chem Res 39:1944CrossRefGoogle Scholar
  36. 36.
    Gil A, Vicente MA, Korili SA (2005) Effect of the Si/Al ratio on the structure and surface properties of silica-alumina-pillared clays. J Catal 229:119CrossRefGoogle Scholar
  37. 37.
    Fetter G, Tichit D, De Menorval LC, Figueras F (1995) Synthesis and characterization of pillared clays containing both Si and Al pillars. Appl Catal A 126:165CrossRefGoogle Scholar
  38. 38.
    Han Y-S, Yamanaka S (2006) Preparation and characterization of microporous SiO2-ZrO2 pillared montmorillonite. J Solid State Chem 179:1146CrossRefGoogle Scholar
  39. 39.
    Trejo MA, Flores SO, Córdova I, Valenzuela MA, Fetter G (2003) Synthesis of Al-La-pillared clays using microwave irradiation. 18th North American catalysis society meeting Proceedings, Cancún, MexicoGoogle Scholar
  40. 40.
    Trejo M, Fetter G, Bosch P, Sánchez-Sánchez J, Alvarez LJ (2000) “Síntesis y caracterización de arcillas pilareadas con La-Al”, in XVII Simposio Iberoamericano de Catálisis, Vol. I, pp. 449, Oporto, Portugal.Google Scholar
  41. 41.
    Sterte J (1991) Preparation and properties of large-pore La-Al-pillared montmorillonite. Clays Clay Miner 39:167CrossRefGoogle Scholar
  42. 42.
    Booij E, Kloprogge JT, Van Veen JAR (1996) Preparation, structural characteristics and catalytic properties of large-pore rare earth element (Ce,La)/Al-pillared smectites. Clays Clay Miner 44:774CrossRefGoogle Scholar
  43. 43.
    Pires J, Machado M, De Carvalho MB (1998) Porosity and thermal stability of PILCs prepared with clays from different origins and different metal-polyhydroxycationic species of Al and Al/Ce. J Mater Chem, 8:1465CrossRefGoogle Scholar
  44. 44.
    Rao GR, Mishra BG (2005) A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays. Mater Chem Phys 89:110CrossRefGoogle Scholar
  45. 45.
    Mishra BG, Rao GR (2005) Cerium containing Al- and Zr-pillared clays: promoting effect of cerium (III) ions on structural and catalytic properties. J Porous Mater 12:171CrossRefGoogle Scholar
  46. 46.
    Carriazo J, Guélou E, Barrault J, Tatibouët JM, Molina R, Moreno S (2005) Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catal Today 107:126Google Scholar
  47. 47.
    Vicente MA, Belver C, Trujillano R, Bañares-Muñoz MA, Rives V, Korili SA, Gil A, Gandía LM, Lambert J-F (2003) Preparation and characterisation of vanadium catalysts supported over alumina-pillared clays. Catal Today 78:181CrossRefGoogle Scholar
  48. 48.
    Molina R, Vieira-Coelho A, Poncelet G (1992) Hydroxy-A1 pillaring of concentrated clay suspensions. Clays Clay Miner 40:480CrossRefGoogle Scholar
  49. 49.
    Pérez-Zurita MJ, Pérez-Quintana GJ, Alfonso H, Maldonado A, Urbino de Navarro C, De Abrisqueta A, Scott CE (2005) Synthesis of Al-PILC assisted by ultrasound: reducing the intercalation time and the amount of synthesis water. Clays Clay Miner 53:528CrossRefGoogle Scholar
  50. 50.
    Berry FJ, Rao KK, Oates G (1994) Fe-57 Mossbauer-spectroscopy study of iron-oxide pillared clays synthesized by microwave-heating. Hyperfine Interact 83:343Google Scholar
  51. 51.
    Awate SV, Waghmode SB, Patil KR, Agashe MS, Joshi PN (2001) Influence of preparation parameters on characteristics of zirconia-pillared clay using ultrasonic technique and its catalytic performance in phenol hydroxylation reaction. Korean J Chem Eng 18:257CrossRefGoogle Scholar
  52. 52.
    Sadykov VA, Kuznetsova TG, Doronin VP, Sorokina TP, Kochubei DI, Novgorodov BN, Kolomiichuk VN, Moroz EM, Zyuzin DA, Paukshtis EA, Fenelonov VB, Derevyankin AYa, Beloshapkin SA, Matyshak VA, Konin GA, Ross JRH (2001) Structure of zirconia nanoparticles used for pillaring of clay. Materials Research Society Symposium V paper V13.21, Boston.Google Scholar
  53. 53.
    Katdare SP, Ramaswamy V, and Ramaswamy AV (1997) Intercalation of Al oligomers into Ca2+-montmorillonite using ultrasonics, J Mater Chem 7:2197; (1999), Ultrasonication: a competitive method of intercalation for the preparation of alumina pillared montmorillonite catalyst, Catal Today 49:313; (2000), Factors affecting the preparation of alumina pillared montmorillonite employing ultrasonics, Microporous Mesoporous Mater 37:329Google Scholar
  54. 54.
    Sivakumar S, Damodaran AD, Warrier KGK (1995) Delamination through sonication for hydroxy metal-oxide sol intercalation of montmorillonite. Ceramics Internet 21:85CrossRefGoogle Scholar
  55. 55.
    Awate SV, Waghmode SB, Agashe MS (2004) Synthesis, characterization and catalytic evaluation of zirconia-pillared montmorillonite for linear alkylation of benzene. Catal Commun 5:407CrossRefGoogle Scholar
  56. 56.
    Negron A, Ramos S, Blumenfeld AL, Pacheco G, Fripiat J (2002) On the structural stability of montmorillonite submitted to heavy gamma-irradiation. Clays Clay Miner 50:35CrossRefGoogle Scholar
  57. 57.
    Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21:117CrossRefGoogle Scholar
  58. 58.
    Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57:9199CrossRefGoogle Scholar
  59. 59.
    Fioni A, Breccia A (1999) Chemistry by microwaves. Pure Appl Chem 71:573CrossRefGoogle Scholar
  60. 60.
    Lindley J (1990) Sonochemical aspects of inorganic and organometallic chemistry including catalysis. In: Mason TJ (ed) Chemistry with ultrasound, vol 28. Elsevier Applied Science, London, pp 27–64Google Scholar
  61. 61.
    Khachatryan AKh, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond Related Mater 17:931CrossRefGoogle Scholar
  62. 62.
    Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681CrossRefGoogle Scholar
  63. 63.
    Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159CrossRefGoogle Scholar
  64. 64.
    Mason TJ (1990) Introduction. In: Mason TJ (ed) Chemistry with ultrasound, vol 28. Elsevier Applied Science, London, pp 1–25Google Scholar
  65. 65.
    Vicente I, Salagre P, Cesteros Y, Guirado F, Medina F, Sueiras JE (2009) Fast microwave synthesis of hectorite. Appl Clay Sci 43:103CrossRefGoogle Scholar
  66. 66.
    Granquist WT, Pollack SS (1959) Crystallization of hectorite favored by brucite nuclei. Clays Clay Miner 8:150CrossRefGoogle Scholar
  67. 67.
    Du D, Zhao X, Lu X (2005) Comparison of conventional and microwave-assisted synthesis and characteristics of aluminum-pillared rectorite. J Wuhan Univ Tech Mater Sci Ed 20:53CrossRefGoogle Scholar
  68. 68.
    Daniel LM, Frost RL, Zhu HY (2007) Synthesis and characterisation of clay-supported titania photocatalysts. J Coll Interface Sci 316:72CrossRefGoogle Scholar
  69. 69.
    Ashcroft RC, Bond SP, Beevers MS, Lawrence MAM, Gelder A, McWhinnie WR (1992) Sn-119 Mossbauer and X-ray photoelectron studies of novel tin oxide pillared laponite formed under ambient conditions from aryltin precursors - rapid intercalation reactions using microwave-heating. Polyhedron 11:1001CrossRefGoogle Scholar
  70. 70.
    Pinnavaia TJ, Tzou MS, Landau SD (1985) New chromia pillared clay catalysts. J Am Chem Soc 107:4783CrossRefGoogle Scholar
  71. 71.
    Volzone C, Cesio AM (2003) Changes in OH-Cr-montmorillonite after heating in air and nitrogen atmospheres. Mater Chem Phys 79:98CrossRefGoogle Scholar
  72. 72.
    Stievano L, Mbemba K, Train C, Wagner FE, Lambert J-F (2006) Intercalation of [Fe-8(mu(3)-O)(2)(mu(2)-OH)(12)(tacn)(6)](8+) single molecule magnets in saponite clay. J Phys Chem Solids 67:1363CrossRefGoogle Scholar
  73. 73.
    Benito P, Labajos FM, Rocha J, Rives V (2006) Influence of microwave radiation on the textural properties of layered double hydroxides. Micropor Mesopor Mater 94:148CrossRefGoogle Scholar
  74. 74.
    Benito P, Herrero M, Barriga C, Labajos FM, Rives V (2008) Microwave-assisted homogeneous precipitation of hydrotalcites by urea hydrolysis. Inorg Chem 47:5453CrossRefGoogle Scholar
  75. 75.
    Abelló S, Medina F, Tichit D, Pérez-Ramírez J, Cesteros Y, Salagre P, Sueiras JE (2005) Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. Chem Comm 1453Google Scholar
  76. 76.
    Rivera JA, Fetter G, Bosch P (2006) Microwave power effect on hydrotalcite synthesis. Micropor Mesopor Mater 89:306CrossRefGoogle Scholar
  77. 77.
    Rivera JA, Fetter G, Giménez Y, Xochipa MM, Bosch P (2007) Nickel distribution in (Ni,Mg)/Al-layered double hydroxides. Appl Catal A 316:207CrossRefGoogle Scholar
  78. 78.
    Tichit D, Rolland A, Prinetto F, Fetter G, Martínez-Ortiz MJ, Valenzuela MA, Bosch P (2002) Comparison of the structural and acid-base properties of Ga- and Al-containing layered double hydroxides obtained by microwave irradiation and conventional ageing of synthesis gels. J Mater Chem 12:3832CrossRefGoogle Scholar
  79. 79.
    Castro LV, Fetter G, Valenzuela MA, Bosch P (2004) Condensación aldólica catalizada con hidrotalcitas intercaladas. In: XIX symposium Iberoam catalysis proceedings, Mérida, Yucatán, México, Spanish, pp 2714Google Scholar
  80. 80.
    Zhang ZJ, Mei XJ, Fen LR, Lu SJ, Qiu FL (2004) Preparation of PO43-, P2O74- anion-pillared nanocrystalline Mg-Al and Zn-Al layered double hydroxides in microwave fields. Chinese Chem Lett 15:867Google Scholar
  81. 81.
    Martinez-Gallegos S, Herrero M, Rives V (2008) In situ microwave-assisted polymerization of polyethylene terephtalate in layered double hydroxides. J Appl Polymer Sci 109:1388CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de México A.P. 70360, Ciudad UniversitariaMéxicoMexico

Personalised recommendations