Computer Modeling of Electrical Activation: From Cellular Dynamics to the Whole Heart

  • Bruce H. SmaillEmail author
  • Peter J. Hunter


This chapter is intended to: (1) serve as an overview of the current state of computer modeling of cardiac electrical activation at the tissue and whole organ levels; (2) indicate some of the issues that will need to be addressed over the next 5–10 years; and (3) provide a reference list that will guide the reader toward more thorough reading in this field. Limitations on space mean that it cannot be a comprehensive review, and we apologize for omissions or apparent bias that may have occurred as a result. However, we hope to persuade you that computer modeling, which has contributed so much already to our knowledge of the electrical function of the heart, will be a critical tool for enhancing scientific understanding of the field and facilitating clinical utilization of that understanding in the future.


Ventricular Myocardium Epicardial Surface Purkinje System Body Surface Potential Virtual Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pullan AJ, Cheng LK, Buist ML. Mathematically Modeling the Electrical Activity of the Heart: FromCell to Body Surface and Back Again. Hackensack NJ: World Scientific Publishing Co. Pvt. Ltd., 2005.CrossRefGoogle Scholar
  2. 2.
    Streeter DDJ. Gross morphology and fiber geometry of the heart. In: Berne RM, Sperilakis N, Geigert SR, editors. Handbook of Physiology. Baltimore: Williams Wilkins, 1979: 61–112.Google Scholar
  3. 3.
    Hunter PJ, Smaill BH. The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 1989; 52:101–64.CrossRefGoogle Scholar
  4. 4.
    Nielsen PM, Le Grice IJ, Smaill BH, et al. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Heart Circ Physiol 1991; 260:H1365–78.Google Scholar
  5. 5.
    Vetter FJ, McCulloch AD. Three dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol 1998; 69:157–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Stevens C, Hunter PJ. Sarcomere length changes in a 3D mathematical model of the pig ventricles. Prog Biophys Mol Biol 2003; 82:229–41.PubMedCrossRefGoogle Scholar
  7. 7.
    LeGrice I, Smaill B, Chai L, et al. Laminar structure of the heart: ventricular myocyte arrangment and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 1995; 269:H571–82.Google Scholar
  8. 8.
    Arts T, Costa K, Covell J, et al. Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 2001; 280:H2222–9.PubMedGoogle Scholar
  9. 9.
    Costa K, May-Newman K, Farr D, et al. Three-dimensional residual strain in midanterior canine left ventricle. Am J Physiol Heart Circ Physiol 1997; 42:H1968–76.Google Scholar
  10. 10.
    LeGrice I, Takayama, Y, Covell, JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77:182–93.PubMedCrossRefGoogle Scholar
  11. 11.
    LeGrice I, Hunter P, Smaill B. Laminar structure of the heart: a mathematical model. Am J Physiol Heart Circ Physiol 1997; 272:H2466–76.Google Scholar
  12. 12.
    Sands G, Gerneke D, Hooks D, et al. Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech 2005; 67:227–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Young A, LeGrice I, Young M, et al. Extended confocal microscopy of myocardial laminae and collagen network. J Microsc 1998; 192:139–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Hooks DA, Tomlinson KA, Marsden SG, et al. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 2002; 91:331–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Berenfeld O, Jalife J. Purkinje-muscle reentry as a mechanism of poly-morphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res 1998; 82:1063–77.PubMedCrossRefGoogle Scholar
  16. 16.
    Vigmond EJ, Clements CJ. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans Biomed Eng 2007; 54:389–99.PubMedCrossRefGoogle Scholar
  17. 17.
    ten Tusscher KHWJ, Panfilov AV. Modelling of the ventricular conduction system. Prog Biophys Mol Biol 2008; 96:152–70.CrossRefGoogle Scholar
  18. 18.
    ten Tusscher K, Panfilov A. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am J Physiol Heart Circ Physiol 2003; 284:H542–48.PubMedGoogle Scholar
  19. 19.
    Helm P, Tseng HJ, Younes L, et al. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 2005; 54:850–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hren RA. Realistic model of the human ventricular myocardium: application to the study of ectopic activation (PhD Thesis). Halifax, Nova Scotia: Dalhousie University, 1996.Google Scholar
  21. 21.
    ten Tusscher KHWJ, Mourad A, Nash MP, et al. Organization of ventricular fibrillation in the human heart: experiments and models. Exp Physiol 2009; 94:553–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Plank G, Burton RAB, Hales P, et al. Generation of histo-anatomically representative models of the individual heart: tools and application. Philos Trans R Soc Lond A 2009; 367:2257–92.CrossRefGoogle Scholar
  23. 23.
    Chen J, Liu W, Zhang H, et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 2005; 289:H1898–907.PubMedCrossRefGoogle Scholar
  24. 24.
    Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964; 67:200–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Blanc O, Virag N, Vesin J-M, et al. A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans Biomed Eng 2001; 48:1229–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Jacquemet V, Virag N, Ihara Z, et al. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J Cardiovasc Electrophysiol 2003; 14:S172–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Vigmond EJ, Ruckdeschel R, Trayanova NA. Reentry in a morphologically realistic atrial model. J Cardiovasc Electrophysiol 2001; 12:1046–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Virag N, Jacquemet V, Henriquez CS, et al. Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 2002; 12:754–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Harrild DM, Henriquez CS. A computer model of normal conduction in the human atria. Circ Res 2000; 87:E25–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Seemann G, Hoper C, Sache FB, et al. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Trans R Soc London A 2006; 364:1465–81.CrossRefGoogle Scholar
  31. 31.
    Sachse FB, Werner CD, Stenroos MH, et al. Modeling the anatomy of the human heart using the cryosection images of the Visible Female dataset. In: Patrias K, editor. Visible Human Project: January 1987 Through August 2000. Bethesda, MD: U.S. Dept of Health and Human Services, Public Health Service, NIH.Google Scholar
  32. 32.
    Dobrzynski H, Li J, Tellez J, Greener ID, Nikolski VP, Wright SE, Parson SH, Jones SA, Lancaster MK, Yamamoto M, Honjo H, Takagishi Y, Kodama I, Efimov IR, Billeter R, and Boyett MR. Computer Three-Dimensional Reconstruction of the Sinoatrial Node. Circulation 111: 846–854, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Li J, Greener ID, Inada S, Nikolski VP, Yamamoto M, Hancox JC, Zhang H, Billeter R, Efimov IR, Dobrzynski H, and Boyett MR. Computer Three-Dimensional Reconstruction of the Atrioventricular Node. Circulation Research 102: 975–985, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    Tung L. A biodomain model for describing ischemic myocardial DC potentials (PhD Thesis). MIT, 1978.Google Scholar
  35. 35.
    Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84:431–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Buist ML, Sands GB, Hunter PJ, et al. A deformable finite element derived finite difference method for cardiac activation problems. Ann Biomed Eng 2003; 31:577–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Harrild DM, Henriquez CS. A finite volume model of cardiac propagation. Ann Biomed Eng 1997; 25:315–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Trew M, LeGrice I, Smaill B, et al. A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Ann Biomed Eng 2005; 33:590–602.PubMedCrossRefGoogle Scholar
  39. 39.
    Colli Franzone P, Guerri L, Pennacchio M, et al. Spread of excitation in 3D models of anisotropic cardiac tissue. II. Effects of fiber fiber architecture and ventricular geometry. Math Biosci 1998; 147:131–71.CrossRefGoogle Scholar
  40. 40.
    Shaw R, Rudy Y. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 1997; 81:727–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Spach MS, Heidlage JF. The stochastic nature of cardiac propagation at a microscopic level: electrical description of myocardial architecture and its application to conduction. Circ Res 1995; 76:366–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Kucera JP, Rudy Y. Mechanistic insights into very slow conduction in branching cardiac tissue: a model study. Circ Res 2001; 89:799–806.PubMedCrossRefGoogle Scholar
  43. 43.
    Rohr S, Schölly D, Kléber A. Patterned growth of neonatal rat heart cells in culture: morphological and electrophysiological characterization. Circ Res 1991; 68:114–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Pertsov AM. Scale of geometric structures responsible for discontinuous propagation in myocardial tissue. In: Spooner P, Joyner R, Jalife J, editors. Discontinuous conduction in the heart. Armonk, NY: Futura Publishing Company, 1997.Google Scholar
  45. 45.
    Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res 2007; 101:839–47.PubMedCrossRefGoogle Scholar
  46. 46.
    ten Tusscher KH, Hren R, Panifilov AV. Organization of ventricular fibrillation in the human heart. Circ Res 2007; 100:e87–101.PubMedCrossRefGoogle Scholar
  47. 47.
    Krogh-Madsen T, Christini DJ. Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier. Biophys J 2007; 92:1138–49.PubMedCrossRefGoogle Scholar
  48. 48.
    Clayton R, Taggart P. Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: a computational study. Biomed Eng 2005; 4:54.Google Scholar
  49. 49.
    Weiss J, Karma A, Shiferaw Y, et al. From pulsus to pulseless: the saga of cardiac alternans. Circ Res 2006; 98:1244–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Wikswo JP, Lin, SF, Abbas, RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 1995; 69:2195–210.PubMedCrossRefGoogle Scholar
  51. 51.
    Weidmann S. Electrical constants of trabecular muscle for mammalian heart. J Physiol 1970; 210:1041–54.PubMedGoogle Scholar
  52. 52.
    Plonsey R, Barr R. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents. Med Biol Eng Comput 1986; 24:130–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou X, Knisley S, Smith W, et al. Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res 1998; 83:1003–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 1997; 73:1410–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Trayanova N, Skouibine K. Modeling defibrillation: effects of fiber curvature. J Electrocardiol 1998; 31(Suppl):23–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Hooks D, Trew M, LeGrice I, et al. Evidence that intramural virtual electrodes facilitate successful fibrillation: do transmural boundaries obscure the view? J Cardiovasc Electrophysiol 2006; 17:305–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Efimov I, Gray R, Roth B. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 2000; 11:339–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Lin S, Roth B, Wikswo J. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 1999; 10:574–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Hunter PJ, McNaughton PA, Noble D. Analytical models of propagation in excitable cells. Prog Biophys Mol Biol 1975; 30:99–144.PubMedCrossRefGoogle Scholar
  60. 60.
    Caldwell BJ, Trew ML, Sands GB, et al. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ Arrhythm Electrophysiol 2009; 2:433–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Hooks DA, Trew ML, Caldwell BJ, et al. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res 2007; 107:e103–12.CrossRefGoogle Scholar
  62. 62.
    Sharifov O, Fast V. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations. Circulation 2004; 109:2349–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Sharifov O, Ideker R, Fast V. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Cardiovasc Res 2004; 64:448–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Colli Franzone P, Guerri L, Taccardi B. Potential distributions generated by point stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle. J Cardiovasc Electrophysiol 1993; 4:438–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Muzikant AL, Hsu EW, Wolf PD, et al. Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials. Ann Biomed Eng 2002; 30:867–83.PubMedCrossRefGoogle Scholar
  66. 66.
    Colli Franzone P, Guerri L, Taccardi B. Modeling ventricular activation: axial and orthotropic anisotropy effects on wavefronts and potentials. Math Biosci 2004; 188:191–205.PubMedCrossRefGoogle Scholar
  67. 67.
    Panfilov A. Modeling of re-entrant patterns in an anatomical model of the heart. In: Panfilov A, Holden A, editors. Computational Biology of the Heart. Chichester, UK: Wiley, 1997:259–76.Google Scholar
  68. 68.
    Panfilov AV. Three-dimensional organization of electrical turbulence in the heart. Phys Rev E 1999; 59:R6251–4.CrossRefGoogle Scholar
  69. 69.
    Panfilov AV, Pertsov AM. Ventricular fibrillation: evolution of the multiple wavelet hypothesis. Philos Trans R Soc London A 2001; 359:1315–25.CrossRefGoogle Scholar
  70. 70.
    ten Tusscher K, Noble D, Noble P, et al. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 2004; 286:H1573–89.PubMedCrossRefGoogle Scholar
  71. 71.
    Nash MP, Bradley CP, Sutton PM, et al. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study. Exp Physiol 2006; 9:339–54.Google Scholar
  72. 72.
    Clayton RH, Panfilov AV. A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog Biophys Mol Biol 2008; 96:19–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Keldermann RH, Ten Tusscher KHWJ, Nash MP, et al. A computational study of mother rotor VF in the human ventricles. Am J Physiol Heart Circ Physiol 2009; 296:H370–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Trayanova N. Defibrillation of the heart: insights into mechanisms from modelling studies. Exp Physiol 2006; 91:323–37.PubMedCrossRefGoogle Scholar
  75. 75.
    Eason J, Malkin RA. A simulation study evaluating the performance of high-density electrode arrays on myocardial tissue. IEEE Trans Biomed Eng 2000; 47:893–901.PubMedCrossRefGoogle Scholar
  76. 76.
    Rodríguez B, Li L, Eason JC, et al. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 2005; 97:168–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Dang L, Virag N, Ihara Z, et al. Evaluation of ablation patterns using a biophysical model of atrial fibrillation. Ann Biomed Eng 2005; 33:465–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Nygren A, Fiset C, Firek L, et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res 1998; 82:63–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Fenton FH, Cherry EM, Ehrlich JR, et al. A simulation study of atrial fibrillation initiation: differences in resting membrane potential can produce spontaneous activation at the pulmonary vein-left atrial junction. Heart Rhythm 2004; 1:S187–88.Google Scholar
  80. 80.
    Fenton FH, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 1998; 8:20–47.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao J, Trew M, LeGrice I, et al. A tissue specific model of reentry in the right atrial appendage. J Cardiovasc Electrophysiol 2009; 20:675–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 1998; 275:H301–21.Google Scholar
  83. 83.
    Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 1991; 68:1501–26.PubMedCrossRefGoogle Scholar
  84. 84.
    Becker R, Bauer A, Metz S, et al. Intercaval block in normal canine hearts: role of the terminal crest. Circ Res 2001; 103:2521–6.CrossRefGoogle Scholar
  85. 85.
    Cosıo F. The right atrium as an anatomic set-up for re-entry: electrophysiology goes back to anatomy. Heart 2002; 88:325–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Smaill B, LeGrice I, Hooks D, et al. Cardiac structure and electrical activation: models and measurement. Clin Exp Pharmacol Physiol 2004; 31:913–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Auckland Bioengineering Institute and Department of PhysiologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations