Advertisement

Cardiac Cellular Electrophysiological Modeling

  • David P. NickersonEmail author
  • Peter J. Hunter
Chapter

Abstract

Mathematical models of cardiac cellular electrophysiology have evolved significantly over the last 50 years. Beginning with the initial four ODE models from Noble in 1962, models are now being developed with many tens of differential equations requiring hundreds of parameters and integrating multiple aspects of cellular physiology. Such increases in complexity inevitably result in significant barriers to the use of the models by independent scientists or even application of existing models in novel scenarios. Technologies are being developed which negate these barriers to some extent and provide tools to aid model developers and users in the reuse of previous models. In this chapter, we review some of the common cardiac cellular electrophysiology models and place them in the context of current model description technologies in order to illustrate the current state of the field.

Keywords

Sarcoplasmic Reticulum Potassium Current Brugada Syndrome Purkinje Fiber Restitution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Noble D, Rudy Y. Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil Trans R Soc Lond A 2001;359:1127–42.CrossRefGoogle Scholar
  2. 2.
    Nickerson DP, Hunter PJ. The Noble cardiac ventricular electrophysiology models in CellML. Prog Biophys Mol Biol 2006;90:346–59. URL: http://dx.doi.org/10.1016/j.pbiomolbio.2005.05.007.
  3. 3.
    Rudy Y, Silva JR. Computational biology in the study of cardiac ion channels and cell electrophysiology. Q Rev Biophys 2006;39:57–116. URL: http://dx.doi.org/10.1017/S0033583506004227.
  4. 4.
    ten Tusscher KHWJ, Bernus O, Hren R, et al. Comparison of electrophysiological models for human ventricular cells and tissues. Prog Biophys Mol Biol 2006;90:326–45. URL: http://dx.doi.org/10.1016/j.pbiomolbio.2005.05.015.Google Scholar
  5. 5.
    Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 1952;117:500–44.PubMedGoogle Scholar
  6. 6.
    FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1961;1:445–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagumo J, Animoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc Inst Radio Engineers 1962;50:2061–70.Google Scholar
  8. 8.
    Rogers JM, McCulloch A. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 1994;41:743–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Aliev RR, Panfilov AV. A simple two-variable model of cardiac excitation, Chaos Solitons Fractals 1996;7:293–301.CrossRefGoogle Scholar
  10. 10.
    Hunter PJ, McNaughton PA, Noble D. Analytical models of propagation in excitable cells. Prog Biophys Molec Biol 1975;30:99–144.CrossRefGoogle Scholar
  11. 11.
    van Capelle FJL, Durrer D. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ Res 1980;47:454–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 1998;8:20–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Beeler GW, Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 1977;268:177–210.PubMedGoogle Scholar
  14. 14.
    Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarisation, repolarisation, and their interaction. Circ Res 1991;68:1501–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Noble D. A modification of the Hodgkin-Huxley equation applicable to Purkinje fibre action and pacemaker potentials. J Physiol 1962;160:317–52.PubMedGoogle Scholar
  16. 16.
    McAllister RE, Noble D, Tsien RW. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 1975;251:1–59.PubMedGoogle Scholar
  17. 17.
    Spach MS, Heidlage JF. A multidimensional model of cellular effects on the spread of electronic currents and on propagating action potentials. In: Pilkington TC, Loftis B, Thompson JF, Woo SLY, Palmer TC, Budinger TF, editors. High-performance computing in biomedical research. Boca Raton, FL: CRC Press Inc., 1993; p. 289–317.Google Scholar
  18. 18.
    Ebihara L, Johnson EA. Fast sodium current in cardiac muscle. A quantitative description. Biophys J 1980;32:779–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Drouhard JP, Roberge FA. Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput Biomed Res 1987;20:333–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Skouibine KB, Trayanova NA, Moore PK. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math Biosci 2000;166:85–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Fabiato A, Fabiato F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol Lond 1975;249:469–95.PubMedGoogle Scholar
  22. 22.
    Colatsky TJ. Voltage clamp measurement of sodium channel properties in rabbit cardiac Purkinje fibre. J Physiol Lond 1980;305:215–34.PubMedGoogle Scholar
  23. 23.
    Gadsby DC. Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc Natl Acad Sci USA 1980;77:4035–9.PubMedCrossRefGoogle Scholar
  24. 24.
    DiFrancesco D. Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans R Soc Lond B 1985;307:353–98.CrossRefGoogle Scholar
  25. 25.
    Kimura J, Noma A, Irisawa H. Na–Ca exchange current in mammalian heart cells. Nature 1986;319:596–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Hilgemann DW, Noble D. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond B 1987;230:163–205.PubMedCrossRefGoogle Scholar
  27. 27.
    Noble D, Varghese A, Kohl P, et al. Improved guinea-pig ventricular cell model incorporating a diadic space, iKr and iKs, length- and tension-dependent processes. Can J Cardiol 1998;14:123–34.PubMedGoogle Scholar
  28. 28.
    Yue DT, Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflueg Arch 1988;413:127–33.CrossRefGoogle Scholar
  29. 29.
    Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994;74:1071–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Winslow RL, Scollan DF, Holmes A, et al. Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu Rev Biomed Eng 2000;2:119–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Zeng J, Laurita KR, Rosenbaum DS, et al. Two components of the delayed rectifier k+ current in ventricular myocytes of the guinea pig type: theoretical formulation and their role in repolarization. Circ Res 1995;77:140–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Viswanathan PC, Shaw RM, Rudy Y. Effects of iKr and iKsheterogeneity on action potential duration and its rate dependence. Circulation 1999;99:2466–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Faber GM, Rudy Y. Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study. Biophys J 2000;78:2392–404.PubMedCrossRefGoogle Scholar
  34. 34.
    Jafri MS, Rice JJ, Winslow RL. Cardiac Ca2+ dynamics: the role of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 1998;74:1149–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Imredy JP, Yue DT. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron 1994;12:1301–18.PubMedCrossRefGoogle Scholar
  36. 36.
    Keizer J, Levine L. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 1996;71:3477–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Noble D, Noble SJ, Bett GCL, et al. The role of sodium–calcium exchange during the cardiac action potential. Ann NY Acad Sci 1991;639:334–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Earm YE, Noble D. A model of the single atrial cell: relation between calcium current and calcium release. Proc R Soc Lond B 1990;240:83–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 1999;400:566–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Clancy CE, Rudy Y. Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc Res 2001;50:301–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Clancy CE, Rudy Y. Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism, Circulation 2002;105:1208–13.PubMedCrossRefGoogle Scholar
  42. 42.
    ten Tusscher KHWJ, Noble D, Noble PJ, et al. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 2004;286:H1573–89. URL: http://dx.doi.org/10.1152/ajpheart.00794.2003.Google Scholar
  43. 43.
    Priebe L, Beuckelmann DJ. Simulation study of cellular electric properties in heart failure. Circ Res 1998;82:1206–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 1998;275:H301–21.Google Scholar
  45. 45.
    Cuellar AA, Lloyd CM, Nielsen PF, et al. An overview of CellML 1.1, a biological model description language. Simulation 2003;79:740–7.CrossRefGoogle Scholar
  46. 46.
    Nickerson D, Buist M. Practical application of CellML 1.1: the integration of new mechanisms into a human ventricular myocyte model. Prog Biophys Mol Biol 2008;98:38–51. URL: http://dx.doi.org/10.1016/j.pbiomolbio.2008.05.006.
  47. 47.
    Wimalaratne SM, Halstead MDB, Lloyd CM, et al. Facilitating modularity and reuse: guidelines for structuring cellml 1.1 models by isolating common biophysical concepts. Exp Physiol 2009;94:472–85. URL: http://dx.doi.org/10.1113/expphysiol.2008.045161.
  48. 48.
    Nickerson DP, Corrias A, Buist ML. Reference descriptions of cellular electrophysiology models. Bioinformatics 2008;24:1112–4. URL: http://dx.doi.org/10.1093/bioinformatics/btn080.Google Scholar
  49. 49.
    Nickerson D, Buist M. Interactive reference descriptions of cellular electrophysiology models. Conf Proc IEEE Eng Med Biol Soc 2008;2008:2427–30. URL: http://dx.doi.org/10.1109/IEMBS.2008.4649689.
  50. 50.
    Nickerson DP, Buist ML. A physiome standards-based model publication paradigm. Philos Transact A Math Phys Eng Sci 2009;367:1823–44. URL: http://dx.doi.org/10.1098/rsta.2008.0296.
  51. 51.
    Lloyd CM, Lawson JR, Hunter PJ, et al. The cellml model repository. Bioinformatics 2008;24:2122–3. URL: http://dx.doi.org/10.1093/bioinformatics/btn390.Google Scholar
  52. 52.
    Beard DA, Britten R, Cooling MT, et al. Cellml metadata standards, associated tools and repositories. Philos Transact A Math Phys Eng Sci 2009;67:1845–67. URL: http://dx.doi.org/10.1098/rsta.2008.0310.
  53. 53.
    Garny A, Nickerson DP, Cooper J, et al. Cellml and associated tools and techniques. Philos Transact A Math Phys Eng Sci 2008;366:3017–43. URL: http://dx.doi.org/10.1098/rsta.2008.0094.
  54. 54.
    Cooling MT, Hunter P, Crampin EJ. Modelling biological modularity with cellml. IET Syst Biol 2008;2:73–9. URL: http://dx.doi.org/10.1049/iet-syb:20070020.
  55. 55.
    Terkildsen JR, Niederer S, Crampin EJ, et al. Using physiome standards to couple cellular functions for rat cardiac excitation–contraction. Exp Physiol 2008;93:919–29. URL: http://dx.doi.org/10.1113/expphysiol.2007.041871.Google Scholar
  56. 56.
    Niederer SA, Fink M, Noble, D, et al. A meta-analysis of cardiac electrophysiology computational models. Exp Physiol 2009;94:486–95. URL: http://dx.doi.org/10.1113/expphysiol.2008.044610.Google Scholar
  57. 57.
    Saucerman JJ, Brunton LL, Michailova AP, et al. Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 2003;278:47997–8003. URL: http://dx.doi.org/10.1074/jbc.M308362200.Google Scholar
  58. 58.
    Saucerman JJ, McCulloch AD. Cardiac beta-adrenergic signaling: from subcellular microdomains to heart failure. Ann NY Acad Sci 2006;1080:348–61. URL: http://dx.doi.org/10.1196/annals.1380.026.Google Scholar
  59. 59.
    Cortassa S, O’Rourke B, Winslow RL, Aon MA. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 2009;96:2466–78. URL: http://dx.doi.org/10.1016/j.bpj.2008.12.3893.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand

Personalised recommendations