Role of 4-1BBL and TRAF1 in the CD8 T Cell Response to Influenza Virus and HIV

  • Tania H. Watts
  • Gloria H.Y. Lin
  • Chao Wang
  • Ann J. McPherson
  • Laura M. Snell
  • Laurent Sabbagh
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 691)

Abstract

4-1BB is an inducible member of the TNFR family found on antigen-activated T cells as well as on cells of the innate immune system. 4-1BB is a late-acting survival factor for effector T cells, sustaining CD8 T cell survival in the lung during severe respiratory infection with influenza virus. With milder influenza infections, 4-1BBL is dispensable for initial CD8 T cell responses. However, 4-1BB on the CD8 T cells and 4-1BBL primarily on radioresistant cells are important in maintaining CD8 T cell memory to influenza virus. 4-1BB is induced on memory but not naive CD8 T cells independently of antigen, by common gamma chain cytokines such as IL-15 and IL-2. This allows memory CD8 T cells to respond to 4-1BBL in the absence of antigen. 4-1BB transduces signals via recruitment of TRAF1 and TRAF2. Earlier work had shown that TRAF2 was essential for 4-1BB signaling in T cells, whereas the role of TRAF1 was unclear. Our recent studies have demonstrated the importance of TRAF1 in the survival of activated and memory CD8 T cells. We also showed that 4-1BB and TRAF1 are important in the costimulation-dependent rescue of functional CD8 T cells from a starting population of non-functional HIV-specific T cells isolated from chronically infected individuals. Downstream of 4-1BB, TRAF1 maintains the stability of TRAF2 and allows ERK-dependent depletion of the proapoptotic molecule BIM, resulting in increased CD8 T survival. Recently several reports have identified linkages between autoimmunity and single nucleotide polymorphisms in the TRAF1/C5 region. Further work is required to determine whether specific polymorphisms in TRAF1 could influence the ability of different individuals to respond to infection.

Notes

Acknowledgments

Funding for our research is provided by the Canadian Institutes of Health Research (CIHR) and the Canadian Cancer Society. G.H.Y. Lin is funded by a CIHR studentship; L.M. Snell is funded by the Fonds de la recherche en santé Quebec; C. Wang is funded by an Ontario HIV treatment network studentship; and L. Sabbagh, by a fellowship from the Leukemia and Lymphoma Society of America. T.H.W. holds the sanofi pasteur chair in Human Immunology at the University of Toronto.

References

  1. 1.
    Bertram EM, Dawicki W, Watts TH (2004) Role of T cell costimulation in anti-viral immunity. Sem Immunol 16:185–196CrossRefGoogle Scholar
  2. 2.
    Sabbagh L, Snell LM, Watts TH (2007) TNF family ligands define niches for T cell memory. Trends Immunol 28:333–339CrossRefPubMedGoogle Scholar
  3. 3.
    Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Ann Rev Immunol 23:23–68CrossRefGoogle Scholar
  4. 4.
    Lynch DH (2008) The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 222:277–286CrossRefPubMedGoogle Scholar
  5. 5.
    Melero I, Murillo O, Dubrot J, Hervas-Stubbs S, Perez-Gracia JL (2008) Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci 29:383–390CrossRefPubMedGoogle Scholar
  6. 6.
    Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215CrossRefPubMedGoogle Scholar
  7. 7.
    Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, DeBenedette MA, Mak TW, Choi Y, Watts TH (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862CrossRefPubMedGoogle Scholar
  8. 8.
    Jang IK, Lee ZH, Kim YJ, Kim SH, Kwon BS (1998) Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-kappa B. Bioch Biophys Res Comm 242:613–620CrossRefGoogle Scholar
  9. 9.
    Arch RH, Thompson CB (1998) 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol Cell Biol 18:558–565PubMedGoogle Scholar
  10. 10.
    Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165:6193–6204PubMedGoogle Scholar
  11. 11.
    Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692CrossRefPubMedGoogle Scholar
  12. 12.
    Carpentier I, Beyaert R (1999) TRAF1 is a TNF inducible regulator of NF-kappaB activation. FEBS Lett 460:246–250CrossRefPubMedGoogle Scholar
  13. 13.
    Tsitsikov EN, Laouini D, Dunn IF, Sannikova TY, Davidson L, Alt FW, Geha RS (2001) TRAF1 is a negative regulator of TNF signaling: enhanced TNF signaling in TRAF1-deficient mice. Immunity 15:647–657CrossRefPubMedGoogle Scholar
  14. 14.
    Speiser DE, Lee SY, Wong B, Arron J, Santana A, Kong YY, Ohashi PS, Choi Y (1997) A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 185:1777–1783CrossRefPubMedGoogle Scholar
  15. 15.
    Jameson SC, Carbone FR, Bevan MJ (1993) Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med 177:1541–1550CrossRefPubMedGoogle Scholar
  16. 16.
    Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson T C, Ledbetter JA, Aruffo A, Mittler RS (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55CrossRefPubMedGoogle Scholar
  17. 17.
    Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med 3:682–685CrossRefPubMedGoogle Scholar
  18. 18.
    Topham DJ, Castrucci MR, Wingo FS, Belz GT, Doherty PC (2001) The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J Immunol 167:6983–6990PubMedGoogle Scholar
  19. 19.
    Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH (2008) ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol 180:8093–8101PubMedGoogle Scholar
  20. 20.
    Sabbagh L, Srokowski CC, Pulle G, Snell LM, Sedgmen BJ, Liu Y, Tsitsikov EN, Watts TH (2006) A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc Natl Acad Sci U S A 103:18703–18708CrossRefPubMedGoogle Scholar
  21. 21.
    Bukczynski J, Wen T, Ellefsen K, Gauldie J, Watts TH (2004) Costimulatory ligand 4-1BBL (CD137L) as an efficient adjuvant for human antiviral cytotoxic T cell responses. Proc Natl Acad Sci U S A 101:1291–1296CrossRefPubMedGoogle Scholar
  22. 22.
    Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH (2007) 4-1BBL Induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T Cells. J Immunol 179:8252–8263PubMedGoogle Scholar
  23. 23.
    Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, Yagita H, Okumura K (1998) CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 273:13353–13358CrossRefPubMedGoogle Scholar
  24. 24.
    Shin H, Wherry EJ (2007) CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol 19:408–415CrossRefPubMedGoogle Scholar
  25. 25.
    Trimble LA, Lieberman J (1998) Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex. Blood 91:585–594PubMedGoogle Scholar
  26. 26.
    Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA, Havlir DV, Richman DD, Waters A, Easterbrook P, McMichael AJ, Rowland-Jones SL (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75CrossRefPubMedGoogle Scholar
  27. 27.
    Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, Van Baarle D, Kostense S, Miedema F, McLaughlin M, Ehler L, Metcalf J, Liu S, Connors M (2002) HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3:1061–1068CrossRefPubMedGoogle Scholar
  28. 28.
    Pantaleo G, Harari A (2006) Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol 6:417–423CrossRefPubMedGoogle Scholar
  29. 29.
    Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10:806–810CrossRefPubMedGoogle Scholar
  30. 30.
    Bukczynski J, Wen T, Wang C, Christie N, Routy JP, Boulassel MR, Kovacs CM, Macdonald KS, Ostrowski M, Sekaly RP, Bernard NF, Watts TH (2005) Enhancement of HIV-specific CD8 T cell responses by dual costimulation with CD80 and CD137L. J Immunol 175:6378–6389PubMedGoogle Scholar
  31. 31.
    Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A, Khalili H, Chandrasekaran A, Davies LR, Li W, Tan AK, Bonnard C, Ong RT, Thalamuthu A, Pettersson S, Liu C, Tian C, Chen WV, Carulli JP, Beckman EM, Altshuler D, Alfredsson L, Criswell LA, Amos CI, Seldin MF, Kastner DL, Klareskog L, Gregersen PK (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study. N Engl J Med 357:1199–1209CrossRefPubMedGoogle Scholar
  32. 32.
    Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G, van der Helm-van Mil AH, Allaart CF, Verduyn W, Houwing-Duistermaat J, Alfredsson L, Begovich AB, Klareskog L, Huizinga TW, Toes RE (2007) A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 4:e278CrossRefPubMedGoogle Scholar
  33. 33.
    Albers HM, Kurreeman FA, Houwing-Duistermaat JJ, Brinkman DM, Kamphuis SS, Girschick HJ, Wouters C, Van Rossum MA, Verduijn W, Toes RE, Huizinga TW, Schilham MW, ten Cate R (2008) The TRAF1/C5 region is a risk factor for polyarthritis in juvenile idiopathic arthritis. Ann Rheum Dis 67:1578–1580CrossRefPubMedGoogle Scholar
  34. 34.
    Behrens EM, Finkel TH, Bradfield JP, Kim CE, Linton L, Casalunovo T, Frackelton EC, Santa E, Otieno FG, Glessner JT, Chiavacci RM, Grant SF, Hakonarson H (2008) Association of the TRAF1-C5 locus on chromosome 9 with juvenile idiopathic arthritis. Arthritis Rheum 58:2206–2207CrossRefPubMedGoogle Scholar
  35. 35.
    Kurreeman FA, Goulielmos GN, Alizadeh BZ, Rueda B, Houwing-Duistermaat J, Sanchez E, Bevova M, Radstake TR, Vonk MC, Galanakis E, Ortego N, Verduyn W, Zervou MI, Consortium S, Roep BO, Dema B, Espino L, Urcelay E, Boumpas DT, van den Berg LH, Wijmenga C, Koeleman BP, Huizinga TW, Toes RE, Martin J (2010) The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69:696–699Google Scholar
  36. 36.
    Panoulas VF, Smith JP, Nightingale P, Kitas GD (2009) Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis. Arthritis Rheum 60:39–46CrossRefPubMedGoogle Scholar
  37. 37.
    Zervou MI, Sidiropoulos P, Petraki E, Vazgiourakis V, Krasoudaki E, Raptopoulou A, Kritikos H, Choustoulaki E, Boumpas DT, Goulielmos GN (2008) Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum Immunol 69:567–571CrossRefPubMedGoogle Scholar
  38. 38.
    Bertram EM, Lau P, Watts TH (2002) Temporal segregation of CD28 versus 4-1BBL-mediated costimulation: 4-1BBL influences T cell numbers late in the primary response and regulates the size of the memory response following influenza infection. J Immunol 168:3777–3785PubMedGoogle Scholar
  39. 39.
    Pulle G, Vidric M, Watts TH (2006) IL-15-dependent induction of 4-1BB promotes Ag-independent CD8 memory T cell survival. J Immunol 176:2739–2748PubMedGoogle Scholar
  40. 40.
    Lin GH, Sedgmen BJ, Moraes TJ, Snell LM, Topham DJ, Watts TH (2009) Endogenous 4-1BB ligand plays a critical role in protection from influenza-induced disease. J Immunol 182:934–947PubMedGoogle Scholar
  41. 41.
    Bertram EM, Dawicki W, Sedgmen B, Bramson JL, Lynch DH, Watts TH (2004) A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172:981–988PubMedGoogle Scholar
  42. 42.
    Zhu Y, Zhu G, Luo L, Flies AS, Chen L (2007) CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 109:4882–4889CrossRefPubMedGoogle Scholar
  43. 43.
    Becker TC, Coley SM, Wherry EJ, Ahmed R (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273PubMedGoogle Scholar
  44. 44.
    Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A (2004) Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 200:825–834CrossRefPubMedGoogle Scholar
  45. 45.
    Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279CrossRefPubMedGoogle Scholar
  46. 46.
    Zapata JM, Krajewska M, Krajewski S, Kitada S, Welsh K, Monks A, McCloskey N, Gordon J, Kipps TJ, Gascoyne RD, Shabaik A, Reed JC (2000) TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 165:5084–5096PubMedGoogle Scholar
  47. 47.
    Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, Archer D, Spencer T, Dillehay D, Kwon B, Chen L, Vella AT, Mittler RS (2007) Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J Immunol 178:4194–4213PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tania H. Watts
    • 1
    • 2
  • Gloria H.Y. Lin
    • 1
  • Chao Wang
    • 1
  • Ann J. McPherson
    • 1
  • Laura M. Snell
    • 1
  • Laurent Sabbagh
    • 1
  1. 1.Department of ImmunologyUniversity of TorontoTorontoCanada
  2. 2.Department of ImmunologyUniversity of TorontoTorontoCanada

Personalised recommendations