Ecotoxicity of Neonicotinoid Insecticides to Bees

  • Axel Decourtye
  • James Devillers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 683)


This chapter reviews the available data on the toxicity of neonicotinoid insecticides to bees that are the prominent and the most economically important group of pollinators worldwide. Classical and new methods developed to take into account the characteristics and different types of effects of the neonicotinoid insecticides to bees are described. The available toxicity results are critically analyzed. Thus, the nitro-substituted compounds (clothianidin, dinotefuran, imidacloprid and its metabolites, thiamethoxam, nitenpyram) appear the most toxic to bees. The cyano-substituted neonicotinoids seem to exhibit a much lower toxicity (acetamiprid and thiacloprid). The chapter ends with suggestions for additional studies aiming at better assess the hazard of this important insecticide family to bees.


Plant Protection Product Proboscis Extension Response Systemic Insecticide Proboscis Extension Econ Entomol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klein AM, Vaissière B, Cane JH et al. Importance of crop pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 2007; 274:303–313.CrossRefGoogle Scholar
  2. 2.
    Williams IH. The dependence of crop production within the European Union on pollination by honey bees. Agric Zool Rev 1994; 6:229–257.Google Scholar
  3. 3.
    Goulson D, Lye GC, Darvill B. Decline and conservation of bumble bees. Annu Rev Entomol 2008; 53:11.1–11.18.CrossRefGoogle Scholar
  4. 4.
    Biesmeijer JC, Roberts SPM, Reemer M et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006; 313:351–354.PubMedCrossRefGoogle Scholar
  5. 5.
    Committee on the Status of Pollinators in North America. Status of Pollinators in North America 2006.Google Scholar
  6. 6.
    Allen-Wardell G, Bernhardt P, Bitner R et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 1998; 12:8–17.CrossRefGoogle Scholar
  7. 7.
    Cluzeau S. Risk assessment of plant protection products on honey bees. In: Devillers J, Pham-Delegue MH, eds. Honey Bees: Estimating the Environmental Impact of Chemicals. London: Taylor and Francis 2002:42–55.CrossRefGoogle Scholar
  8. 8.
    European and Mediterranean Plant Protection Organism. Guideline on test methods for evaluating the side-effects of plant protection products on honey bees. EPPO Bull 1992; 22:203–215.CrossRefGoogle Scholar
  9. 9.
    Maus C, Curé G, Schmuck R. Safety of imidacloprid seed dressings to honey bees: a comprehensive overview and compilation of the current state of knowledge. Bull Insect 2003; 56(1):51–57.Google Scholar
  10. 10.
    Maxima L, van der Sluijs JP. Uncertainty: Cause or effect of stakeholders’ debates?: Analysis of a case study: The risk for honeybees of the insecticide Gaucho®. Sci Total Environ 2007; 376(1-3):1–17.Google Scholar
  11. 11.
    Stark JD, Jepson PC, Mayer DF. Limitation to use of topical toxicity data for prediction of pesticide side effect in the field. J Econ Entomol 1995; 88:1081–1088.Google Scholar
  12. 12.
    Suchail S, Guez D, Belzunces LP. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 2000; 19:1901–1905.Google Scholar
  13. 13.
    Atkins EL, Kellum D, Atkins KW. Reducing pesticide hazards to honey bees: mortality prediction techniques and integrated management strategies. Division of Agricultural Sciences University of California USA 1981; 3–22.Google Scholar
  14. 14.
    Mayer DF, Johansen CA. How to reduce bee poisoning from pesticides, Pacific Northwest Extension Publication, PNW 1999; 518:14.Google Scholar
  15. 15.
    Devillers J, Decourtye A, Budzinski H et al. Comparative toxicity and hazards of pesticides to Apis and non-Apis bees. A chemometrical study, SAR QSAR Environ Res 2003; 14:389–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Suchail S, Debrauwer L, Belzunces LP. Metabolism of imidacloprid in Apis mellifera. Pest Manag Sci 2003; 60:291–296.CrossRefGoogle Scholar
  17. 17.
    Nauen R, Ebbinghaus-Kintscher U, Elbert A et al. Acetylcholine receptors as sites for developing neonicotinoid insecticides. In: Ishaaya I ed. Biochemical sites important in insecticide action and resistance, Springer Verlag Berlin 2001; 77–105.Google Scholar
  18. 18.
    Guez D, Belzunces LP, Maleszka R. Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 2003; 75:217–222.PubMedCrossRefGoogle Scholar
  19. 19.
    Suchail S, Guez D, Belzunces LP. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 2001; 20:2482–2486.PubMedGoogle Scholar
  20. 20.
    Iwasa T, Motoyama N, Ambrose JT et al. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protect 2004; 23:371–378.CrossRefGoogle Scholar
  21. 21.
    Schmuck R, Schöning R, Stork A et al. Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci 2001; 57:225–238.PubMedCrossRefGoogle Scholar
  22. 22.
    Decourtye A, Lacassie E, Pham-Delègue MH. Learning performances of honeybee (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag Sci 2003; 59:269–278.PubMedCrossRefGoogle Scholar
  23. 23.
    Ruzhong G, Rui C, Liangyan C. Evaluation on toxicity and safety of imidacloprid to environmental organisms. Pestic Sci Administration 1999; 20(3).Google Scholar
  24. 24.
    Wallner K. Test regarding effects of imidacloprid on honey bees. In: Belzunces LP, Pélissier C, Lewis G, eds. Proceedings of the 7th International Symposium “Hazards of pesticides to bees”, Les Colloques de l’INRA 2001; 98:91–94.Google Scholar
  25. 25.
    Bonmatin JM, Moineau I, Charvet R et al. A LC/APCI-MS/MS method for analysis of imidacloprid in soil, in plants and in pollens. Anal Chem 2003; 75:2027–2033.PubMedCrossRefGoogle Scholar
  26. 26.
    Aliouane Y, El Hassani AK, Gary V et al. Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behaviour. Environ Toxicol Chem 2009; 28(1):113–122.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmuck R. Effects of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch Environ Contam Toxicol 2004; 47:471–478.PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson EO. The insect societies. Cambridge: Harvard University Press 1971.Google Scholar
  29. 29.
    Dechaume-Moncharmont FX, Decourtye A, Hennequet C et al. Statistical analysis of the honeybee survival after chronic exposure to insecticides. Environ Toxicol Chem 2003; 22(12):3088–3094.PubMedCrossRefGoogle Scholar
  30. 30.
    Decourtye A, Tisseur M, Taséi JN et al. Toxicité et risques liés à l’emploi de pesticides chez les pollinisateurs: cas de l’abeille domestique. In: Regnault-Roger C. ed. Enjeux phytosanitaires pour l’agriculture et l’environnement au XXI° siècle. Tec et Doc Lavoisier, Paris 2005; 283–299.Google Scholar
  31. 31.
    Abbott VA, Nadeau JL, Higo HA et al. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol 2008; 101(3):784–796.PubMedCrossRefGoogle Scholar
  32. 32.
    Taséi JN, Ripault G, Rivault E. Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidea) when applied to sunflower. J Econ Entomol 2001; 94:623–627.PubMedCrossRefGoogle Scholar
  33. 33.
    Medrzycki P, Montanari R, Bortolotti P et al. Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull Insect 2003; 56(1):59–62.Google Scholar
  34. 34.
    Colin ME, Bonmatin JM, Moineau I et al. A Method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 2004; 47:387–395.PubMedCrossRefGoogle Scholar
  35. 35.
    Lambin M, Armengaud C, Raymond S et al. Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 2001; 4:129–134.CrossRefGoogle Scholar
  36. 36.
    El Hassani AK, Dacher M, Gary V et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 2008; 54:653–661.PubMedCrossRefGoogle Scholar
  37. 37.
    Menzel R, Greggers U, Hammer M. Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Papaj DR, Lewis AC eds. Insect learning. New York: Chapman Hall 1993: 79–125.Google Scholar
  38. 38.
    Takeda K. Classical conditioned response in the honey bee. J Insect Physiol 1961; 6:168–179.CrossRefGoogle Scholar
  39. 39.
    Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 2007; 52:81–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Decourtye A, Devillers J, Cluzeau S et al. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 2004; 57(3):410–419.PubMedCrossRefGoogle Scholar
  41. 41.
    Decourtye A, Armengaud C, Renou M et al. Imidacloprid impairs memory and brain metabolism in the honey bee (Apis mellifera L.). Pestic Biochem Physiol 2004; 78(2):83–92.CrossRefGoogle Scholar
  42. 42.
    Decourtye A, Pham-Delègue MH. The proboscis extension response: assessing the sublethal effects of pesticides on the honey bee. In: Devillers J, Pham-Dèlegue MH eds. Honey bees: estimating the environmental impact of chemicals, Taylor and Francis publ., London 2002; 67–84.Google Scholar
  43. 43.
    Armengaud C, Causse N, Aït-Oubah J et al. Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Research 2000; 859:390–393.PubMedCrossRefGoogle Scholar
  44. 44.
    Guez D, Suchail S, Maleszka R et al. Contrasting effects of imidacloprid on habituation in 7-day and 8-day old honeybees. Neurobiol Learn Memory 2001; 76:183–191.CrossRefGoogle Scholar
  45. 45.
    von Frisch K. The dance language and orientation of bees. Cambridge: Harvard University Press 1967.Google Scholar
  46. 46.
    Menzel R, Geiger K, Joerges J et al. Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 1998; 55:139–152.PubMedCrossRefGoogle Scholar
  47. 47.
    Capaldi EA, Dyer FC. The role of orientation flights on homing performance in honeybees. J Exp Biol 1999; 202:1655–1666.PubMedGoogle Scholar
  48. 48.
    Collett TS, Fry SN, Wehner R. Sequence learning by honey bees. J Comp Physiol A 1993; 172, 693–706.Google Scholar
  49. 49.
    Zhang SW, Bartsch K, Srinivasan MV. Maze learning by honeybees. Neurobiol Learn Mem 1996; 66:267–282.PubMedCrossRefGoogle Scholar
  50. 50.
    Tan J, Galligan JJ, Hollingworth RM. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. Neurotoxicol 2007; 28:829–842.CrossRefGoogle Scholar
  51. 51.
    Nauen R, Ebbinghaus-Kintscher U, Salgado V et al. Thiamethoxam is neonicotinoid precursor converted to clothianidin in insects and plants. Pest Biochem Physiol 2003; 76:55–69.CrossRefGoogle Scholar
  52. 52.
    Lindauer M. Time-compensated sun orientation in bees. Cold Spring Harbor Symp quant Bio 1960; 25:371–377.Google Scholar
  53. 53.
    Bortolotti L, Montanari R, Marcelino J et al. Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insect 2003; 56:63–67.Google Scholar
  54. 54.
    Yang EC, Chuang YC, Chen YL et al. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 2008; 101(6):1743–1748.CrossRefGoogle Scholar
  55. 55.
    Rortais A, Arnold G, Halm MP et al. Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005; 36:71–83.CrossRefGoogle Scholar
  56. 56.
    Haynes KF. Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol 1988; 33:149–68.PubMedCrossRefGoogle Scholar
  57. 57.
    Colombo A, Buonocore E. Effetto di trattamenti al terreno con imidacloprid sull’attività dei bombi. L’Informatore Agrario 1997; 53(38):85–87.Google Scholar
  58. 58.
    Alarcón AL, Cánovas M, Senn R et al. The safety of thiamethoxam to pollinating bumble bees (Bombus terrestris L.) when applied to tomato plants through drip irrigation. Commun Agric Appl Biol Sci 2005; 70(4):569–79.PubMedGoogle Scholar
  59. 59.
    Morandin LA, Winston ML. Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 2003; 32:555–563.CrossRefGoogle Scholar
  60. 60.
    Franklin MT, Winston ML, Morandin LA. Effects of clothianidin on Bombus impatiens (Hymenoptera: Apidae) colony health and foraging ability. J Econ Entomol 2004; 97(2):369–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Cutler GC, Scott-Dupree CD. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J Econ Entomol 2007; 100(3):765–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Schmuck R. No causal relationship between Gaucho® seed dressing in sunflowers and the French bee malady. Pflanzenschutz-Nachrichten Bayer 1999; 52:267–309.Google Scholar
  63. 63.
    Mayer DF, Lunden JD. Effects of imidacloprid insecticide on three bee pollinators. Hortic Sci 1997; 29:93–97.Google Scholar
  64. 64.
    Kirchner WH. Mad-bee-disease? Sublethal effects of Imidacloprid (“Gaucho”) on the behaviour of honey-bees. Apidologie 1999; 30:422.CrossRefGoogle Scholar
  65. 65.
    Díaz S, Tilman D, Fargione J et al. Biodiversity regulation of ecosystem services. In: Hassan R, Scholes R, Ash N, eds. Ecosystems and human well-being: Current state and trends: Findings of the Condition and Trends Working Group Washington DC: Island Press 2005; 297–329.Google Scholar
  66. 66.
    Biesmeijer JC, Roberts SPM, Reemer M et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006; 313:351–354.PubMedCrossRefGoogle Scholar
  67. 67.
    Gallai N, Salles JM, Settele J et al. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 2009; 68:810–821.CrossRefGoogle Scholar
  68. 68.
    Thompson HM, Maus C. The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag Sci 2007; 63:1058–1061.PubMedCrossRefGoogle Scholar
  69. 69.
    Curé G, Schmidt HW, Schmuck R. Results of a comprehensive field research programme with the systemic insecticide imidacloprid (Gaucho). In: Belzunces LP, Pelissier C, Lewis GB, eds. Proceedings of the 7th International Symposium “Hazards of pesticides to bees”, Les Colloques de l’INRA 2001; 98:49–59.Google Scholar
  70. 70.
    Bonmatin JM, Marchand PA, Charvet R et al. Quantification of imidacloprid uptake in maize crops. J Agric Food Chem 2005; 53:5336–5341.PubMedCrossRefGoogle Scholar
  71. 71.
    Laurent FM, Rathahao E. Distribution of [14C]imidacloprid in sunflower (Helianthus annuus) following seed treatment. J Agric Food Chem 2003; 51: 8005–8010.PubMedCrossRefGoogle Scholar
  72. 72.
    Stadler T, Martinez Ginés D, Buteler M. Long-term toxicity assessment of imidacloprid to evaluate side effects on honey bees exposed to treated sunflower in Argentina, Bull Insect 2003; 56:77–81.Google Scholar
  73. 73.
    Faucon JP, Aurières C, Drajnudel P et al. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies, Pest Manag Sci 2005; 61:111–125.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Institut Claude BougelatACTAMarcy L’EtoileFrance

Personalised recommendations