Neonicotinoid Insecticides

Historical Evolution and Resistance Mechanisms
  • Steeve Hervé ThanyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 683)


The use of neonicotinoid insecticides has grown considerably since their introduction in 1990s. They are used extensively for the control of agriculturally important crop pests and also in the control of cat and dog fleas. Imidacloprid exploited through an elaborated structural and substituent optimization of nithiazine was launched to market in 1990. The selectivity of neonicotinoid compounds for insect species has been attributed to their binding on nicotinic acetylcholine receptors in which the negatively charged nitro- or cyano-groups of neonicotinoid compounds interact with a cationic subsite within insect nicotinic acetylcholine receptors. The first example of a pest evolving resistance to field use of neonicotinoids was Bemisia tabaci. Resistance to neonicotinoids can arise either through nAChR subtypes expression, detoxification mechanisms and/or structural alterations of target-site proteins. Consequently, a number of derivatives and analogues of imidacloprid have been generated to date. In 1992, a new neonicotinoid using acetylcholine as the lead compound has been found. This was dinotefuran, which has a characteristic tetrahydro-3-furylmethyl group instead of the pyridine-like rings of others neonicotinoids.


Nicotinic Receptor Nicotinic Acetylcholine Receptor Insecticidal Activity Colorado Potato Beetle Brown Planthopper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu Rev Pharmacol Toxicol 2005; 45:247–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 2003; 48:339–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Bunckingham SD, B. L, Le Corronc H et al. Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 1997; 200:2685–91.Google Scholar
  4. 4.
    Ihara M, Matsuda K, Otake M et al. Diverse actions of neonicotinoids on chicken alpha7, alpha4beta2 and drosophila-chicken sadbeta2 and alsbeta2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacology 2003; 45(1):133–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Ihara M, Matsuda K, Shimomura M et al. Super agonist actions of clothianidin and related compounds on the SAD beta2 nicotinic acetylcholine receptor expressed in xenopus laevis oocytes. Biosci Biotechnol Biochem 2004; 68(3):761–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Thany SH. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicology 2009 (In press).Google Scholar
  7. 7.
    Lansdell SJ, Millar NS. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology 2000; 39(4):671–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Tomizawa M, Cowan A, Casida JE. Analgesic and toxic effects of neonicotinoid insecticides in mice. Toxicol Appl Pharmacol 2001; 177(1):77–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu IW, Lin JL, Cheng ET. Acute poisoning with the neonicotinoid insecticide imidacloprid in n-methyl pyrrolidone. J Toxicol Clin Toxicol 2001; 39(6):617–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Shadnia S, Moghaddam HH. Fatal intoxication with imidacloprid insecticide. Am J Emerg Med 2008; 26(5):634 e1–4.CrossRefGoogle Scholar
  11. 11.
    Phua DH, Lin CC, Wu ML et al. Neonicotinoid insecticides: An emerging cause of acute pesticide poisoning. Clin Toxicol 2009; 47(4):336–41.CrossRefGoogle Scholar
  12. 12.
    Deglise P, Grunewald B, Gauthier M. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 2002; 321(1–2):13–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Y, Liu S, Gu J et al. Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation. Neurosci Lett 2008; 446(2–3):97–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Classification IMoA. Insecticide resistance action committee (IRAC). 2005.Google Scholar
  15. 15.
    Kisaki T, Tamaki E. Phytochemical studies on the tobacco alkaloids. I. Optical rotatory power of nornicotine. Arch Biochem Biophys 1961; 92:351–355.PubMedCrossRefGoogle Scholar
  16. 16.
    Lopez TA, Cid MS, Bianchini ML. Biochemistry of hemlock (conium maculatum l.) alkaloids and their acute and chronic toxicity in livestock. A review. Toxicon 1999; 37(6):841–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Schep LJ, Slaughter RJ, Beasley DM. Nicotinic plant poisoning. Clin Toxicol 2009; 47(8):771–81.CrossRefGoogle Scholar
  18. 18.
    Yamamoto I. Nicotinoids as insecticides. In: Metcalf RL, ed. In Advances in Pest Control Research, Vol. 6. New York: Wiley, 1965:231–260.Google Scholar
  19. 19.
    Yamamoto I, Tomizawa M, Saito T et al. Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch Insect Biochem Physiol 1998; 37(1):24–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Casida JE, Quistad GB. Golden age of insecticide research: Past, present, or future? Annu Rev Entomol 1998; 43:1–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Leonard GC, Julius JM. Biopesticides: A review of their action, applications and efficacy. Pest Management Science 2000; 56(8):651–676.CrossRefGoogle Scholar
  22. 22.
    Schmeltz I. Nicotine and other tobacco alkaloids. In: Jacobson M, Crosby DG, eds. Naturally Occurring Insecticides. New York: Dekker, M, 1971:99–136.Google Scholar
  23. 23.
    Soloway SB. Naturally occurring insecticides. Environ Health Perspect 1976; 14:109–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Luck W, Nau H. Exposure of the fetus, neonate and nursed infant to nicotine and cotinine from maternal smoking. N Engl J Med 1984; 311(10):672.PubMedCrossRefGoogle Scholar
  25. 25.
    Luck W, Nau H. Nicotine and cotinine concentrations in serum and milk of nursing smokers. Br J Clin Pharmacol 1984; 18(1):9–15.PubMedGoogle Scholar
  26. 26.
    Reavill C, Walther B, Stolerman IP et al. Behavioral and pharmaco-kinetic studies on nicotine, cytisine and lobeline. Neuropharmacology 1990; 29:619–624.PubMedCrossRefGoogle Scholar
  27. 27.
    Tomizawa M, Yamamoto I. Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptors. J Pestic Sci 1992; 17:231–236.Google Scholar
  28. 28.
    Tomizawa M, Yamamoto I. Structure activity relationships of neonicotinoids and imidacloprid analogues. J Pestic Sci 1993; 18:91–98.Google Scholar
  29. 29.
    Kem WR, Mahnir VM, Papke RL et al. Anabaseineis a potent agonist upon muscle and neuronal alpha-bungarotoxin sensitive nicotinic receptors. J Pharmacol Exp Ther 1997; 283:979–992.PubMedGoogle Scholar
  30. 30.
    Kem WR, Mahnir VM, Prokai L et al. Hydroxy metabolites of the Alzheimer’s drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (GTS-21): Their molecular properties, interactions with brain nicotinic receptors and brain penetration. Mol Pharmacol 2004; 65(1):56–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Spande TF, Garraffo HM, Edwards MW et al. Epibatidine: A novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an ecuadorean poison frog. J Am Chem Soc 1992; 114:3475–3478.CrossRefGoogle Scholar
  32. 32.
    Tomizawa M, Zhang N, Durkin KA et al. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the drosophila nicotinic receptor: An anomaly for the nicotinoid cation—pi interaction model. Biochemistry 2003; 42(25):7819–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Kleier D, Holden I, Casida JE et al. Novel photoreactions of an insecticidal nitromethylene heterocycle. J Agric Food Chem 1985; 33:998–1000.CrossRefGoogle Scholar
  34. 34.
    Moriya K, Shibuya K, Hattori Y et al. Structural modification of the 6-chloropyridyl moiety in the imidacloprid skeleto: Introduction of a five-membered heteroaromatic ring and the resulting insecticidal activity. Biosci Biotechnol Biochem 1993; 57(1):127–128.CrossRefGoogle Scholar
  35. 35.
    Kagabu S, Medej S. Stability comparison of imidacloprid and related compounds under stimulated sunlight, hydrolysis conditions and to oxygen. Biosci Biotechnol Biochem 1995; 59:980–985.CrossRefGoogle Scholar
  36. 36.
    Yamamoto I. Nicotinoids as insecticides. Adv Pest Control Res 1965; 6:231–260.PubMedGoogle Scholar
  37. 37.
    Maienfisch P, Huerlimann H, Rindlisbacher A et al. The discovery of thiamethoxam: A second-generation neonicotinoid. Pest Manag Sci 2001; 57(2):165–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Maienfisch P, Angst M, Brandl F et al. Chemistry and biology of thiamethoxam: A second generation neonicotinoid. Pest Manag Sci 2001; 57(10):906–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Ford KA, Casida JE. Unique and common metabolites of thiamethoxam, clothianidin and dinotefuran in mice. Chem Res Toxicol 2006; 19(11):1549–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Nauen RE-K U, Salgado VL, Kaussmann M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Physiol 2003; 76:55–69.CrossRefGoogle Scholar
  41. 41.
    Honda H, Tomizawa M, Casida JE. Insect nicotinic acetylcholine receptors: Neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J Agric Food Chem 2006; 54(9):3365–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Tan J, Galligan JJ, Hollingworth RM. Agonist actions of neonicotinoids on nicotinic acetylcholine rececptors expressed by cockroach neurons. NeuroToxicology 2007; 28:829–842.PubMedCrossRefGoogle Scholar
  43. 43.
    Wakita T, Yasui N, Yamada E et al. Development of a novel i nsecticide, dinotefuran. J Pestic Sci 2005; 30(2):112–123.CrossRefGoogle Scholar
  44. 44.
    Mori K, Okumoto T, Kawahara N et al. Interaction of dinotefuran and its analogues with nicotinic acetylcholine receptors of cockroach nerve cords. Pest Manag Sci 2002; 58(2):190–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Miyagi S, Komaki I, Ozoe Y. Identification of a high-affinity binding site for dinotefuran in the nerve cord of the american cockroach. Pest Manag Sci 2006; 62(4):293–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang A, Kayser H, Maienfisch P et al. Insect nicotinic acetylcholine receptor: Conserved neonicotinoid specificity of [(3)h]imidacloprid binding site. J Neurochem 2000; 75(3):1294–303.PubMedCrossRefGoogle Scholar
  47. 47.
    Kiriyama K, Nishiwaki H, Nakagawa Y et al. Insecticidal activity and nicotinic acetylcholine receptor binding of dinotefuran and its analogues in the housefly, Musca domestica. Pest Manag Sci 2003; 59(10):1093–100.PubMedCrossRefGoogle Scholar
  48. 48.
    Salgado VL, Sheets JJ, Watson GB et al. Studies on the mode of action of spinosad: The internal effective concentration and concentration dependence of neural excitation. Pest Biochem Physiol 1998; 60:103–110.CrossRefGoogle Scholar
  49. 49.
    Salgado VL. Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pest Biochem Physiol 1998; 60:91–102.CrossRefGoogle Scholar
  50. 50.
    Thompson GD, Dutton R, Sparks TC. Spinosad a case study: An example from a natural products discovery program. Pest Manag Sci 2000; 56:696–702.CrossRefGoogle Scholar
  51. 51.
    Galvan TL, Koch RL, Hutchison WD. Toxicity of indoxacarb and spinosad to the multicolored asian lady beetle, harmonia axyridis (coleoptera: Coccinellidae), via three routes of exposure. Pest Manag Sci 2006; 62(9):797–804.PubMedCrossRefGoogle Scholar
  52. 52.
    Shao X, Li Z, Qian X et al. Design, synthesis and insecticidal activities of novel analogues of neonicotinoids: Replacement of nitromethylene with nitroconjugated system. J Agric Food Chem 2009; 57(3):951–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Stumpf CF, Comins DL, Sparks TC et al. Insecticidal activity and mode of action of novel nicotinoids synthesized by new acylpyridiniumsalt chemistry and directed lithiation. Pest Biochem Physiol 2007; 87:211–219.CrossRefGoogle Scholar
  54. 54.
    Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Arch Insect Biochem Physiol 2005; 58(4):200–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Elbert A, Nauen R. Resistance of Bemisia tabaci (homoptera: Aleyrodidae) to insecticides in southern spain with special reference to neonicotinoids. Pest Manag Sci 2000; 60(1):60–64.CrossRefGoogle Scholar
  56. 56.
    Gorman K, Devine G, Bennison J et al. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (hemiptera: Aleyrodidae). Pest Manag Sci 2007; 63(6):555–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Roditakis E, Grispou M, Morou E et al. Current status of insecticide resistance in q biotype Bemisia tabaci populations from crete. Pest Manag Sci 2009; 65(3):313–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Z, Yao M, Wu Y. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in b-biotype Bemisia tabaci. Pest Manag Sci 2009.Google Scholar
  59. 59.
    Schuster DJ, Mann RS, Toapanta M et al. Monitoring neonicotinoid resistance in biotype b of Bemisia tabaci in florida. Pest Manag Sci 2009.Google Scholar
  60. 60.
    Zhao JZ, Bishop BA, Grafius EJ. Inheritance and synergism of resistance to imidacloprid in the colorado potato beetle (coleoptera: Chrysomelidae). J Econ Entomol 2000; 93(5):1508–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Alyokhin A, Dively G, Patterson M et al. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag Sci 2007; 63(1):32–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Tan J, Salgado VL, Hollingworth RM. Neural actions of imidacloprid and their involvement in resistance in the colorado potato beetle, Leptinotarsa decemlineata (say). Pest Manag Sci 2008; 64(1):37–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Kristensen M, Jespersen JB. Susceptibility to thiamethoxam of Musca domestica from danish livestock farms. Pest Manag Sci 2008; 64(2):126–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao G, Liu WEI, Brown JM et al. Insecticide resistance in field and laboratory strains of western flower thrips (thysanoptera: Thripidae). J Econ Entomol 1995; 88:1164–1170.Google Scholar
  65. 65.
    Zewen L, Zhaojun H, Yinchang W et al. Selection for imidacloprid resistance in Nilaparvata lugens: Cross-resistance patterns and possible mechanisms. Pest Manag Sci 2003; 59(12):1355–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Mota-Sanchez D, Hollingworth RM, Grafius EJ et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the colorado potato beetle, Leptinotarsa decemlineata (say) (coleoptera: Chrysomelidae). Pest Manag Sci 2006; 62(1):30–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Perry T, McKenzie JA, Batterham P. A dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochem Mol Biol 2007; 37(2):184–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Perry T, Heckel DG, McKenzie JA et al. Mutations in dalpha1 or dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochem Mol Biol 2008; 38(5):520–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu Z, Han Z, Liu S et al. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors. J Neurochem 2008; 106(1):224–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Liu Z, Han Z, Zhang Y et al. Heteromeric co-assembly of two insect nicotinic acetylcholine receptor alpha subunits: Influence on sensitivity to neonicotinoid insecticides. J Neurochem 2009; 108(2):498–506.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu Z, Williamson MS, Lansdell SJ et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 2005.Google Scholar
  72. 72.
    Liu Z, Williamson MS, Lansdell SJ et al. A nicotinic acetylcholine receptor mutation (y151s) causes reduced agonist potency to a range of neonicotinoid insecticides. J Neurochem 2006; 99(4):1273–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Schulz R, Bertrand S, Chamaon K et al. Neuronal nicotinic acetylcholine receptors from drosophila: Two different types of alpha subunits coassemble within the same receptor complex. J Neurochem 2000; 74(6):2537–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Yixi Z, Liu Z, Han Z et al. Functional co-expression of two insect nicotinic receptor subunits (Nlalpha3 and Nlalpha8) reveals the effects of a resistance-associated mutation (Nlalpha3) on neonicotinoid insecticides. J Neurochem 2009; 110(6):1855–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Shimomura M, Yokota M, Matsuda K et al. Roles of loop C and the loop B-C interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects. Neurosci Lett 2004; 363(3):195–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Shimomura M, Satoh H, Yokota M et al. Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the drosophila dalpha2 subunit, which contributes to neonicotinoid sensitivity. Neurosci Lett 2005.Google Scholar
  77. 77.
    Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 2003; 54(4):165–76.PubMedCrossRefGoogle Scholar
  78. 78.
    Honda H, Tomizawa M, Casida JE. Neonicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-Cyp3a4 and-aldehyde oxidase systems. Toxicology Letters 2006; 161(2):108–114.PubMedCrossRefGoogle Scholar
  79. 79.
    Karunker I, Benting J, Lueke B et al. Over-expression of cytochrome P450 Cyp6cm1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (hemiptera: Aleyrodidae). Insect Biochem Mol Biol 2008; 38(6):634–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Karunker I, Morou E, Nikou D et al. Structural model and functional characterization of the Bemisia tabaci Cyp6cm1vq, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochem Mol Biol 2009.Google Scholar
  81. 81.
    Tijet N, Helvig C, Feyereisen R. The cytochrome P-450 gene superfamily in Drosophila melanogaster: Annotation, intron-exon organization and phylogeny. Gene 2001; 262:189–198.PubMedCrossRefGoogle Scholar
  82. 82.
    Berenbaum MR. Postgenomic chemical ecology: From genetic code to ecological interactions. J Chem Ecol 2002; 28(5):873–96.PubMedCrossRefGoogle Scholar
  83. 83.
    Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (hemiptera: Aleyrodidae). Pest Manag Sci 2002; 58(9):868–75.PubMedCrossRefGoogle Scholar
  84. 84.
    Joussen N, Heckel DG, Haas M et al. Metabolism of imidacloprid and DDT by P450 Cyp6g1 expressed in cell cultures of nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 2008; 64(1):65–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Schulz-Jander DA, Leimkuehler WM, Casida JE. Neonicotinoid insecticides: Reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes. Chem Res Toxicol 2002; 15(9):1158–65.PubMedCrossRefGoogle Scholar
  86. 86.
    Schulz-Jander DA, Casida JE. Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol Lett 2002; 132(1):65–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Dick RA, Kanne DB, Casida JE. Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol 2005; 18(2):317–23.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC INRA 2023, IFR 149 QUASAVUniversité d’Angers, UFR de SciencesAngersFrance

Personalised recommendations