Advertisement

Philip Starr Wolfe

  • Alan J. Hoffman
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 147)

Abstract

In the early 1950s, even though there were few university departments of operations research(OR), some students found the subject attractive due to the influence of a faculty advisor, specific work experience, or the intellectual challenges OR presented. In Phil Wolfe’s case, all played a role.

Keywords

Operation Research Simplex Method Simplex Algorithm Rand Corporation Watson Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

In preparing this profile, I have been aided by correspondence with Andrew Conn, Richard Cottle, and, especially, Phil Wolfe.

References

  1. Brent R, Winograd S, Wolfe P (1973) Optimal iterative processes for rootfinding. Numerische Mathematik 20:327–341CrossRefGoogle Scholar
  2. Cottle R, Goldfarb D, Hoffman A (eds) (1993) Festschrift in honor of Philip Wolfe. Math Program 62(1), 62(3)Google Scholar
  3. Dantzig G (1963) Linear programming and extensions. Princeton University Press, Princeton, NJGoogle Scholar
  4. Dantzig G, Orden A, Wolfe P (1954) The generalized simplex method for minimizing a linear form under linear inequality constraints. The RAND Corporation, Research memorandum RM-1264, April; also, 1955, Pac J Math 5(2):183–195Google Scholar
  5. Dantzig G, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111CrossRefGoogle Scholar
  6. Ford L Jr, Fulkerson D (1958) A suggested computation for maximal multicommodity network flows. Manage Sci 5(1):97–101CrossRefGoogle Scholar
  7. Fourier J (1826) Solution d’une question particulière du calcul des inégalités. Bulletin des Sciences par la Société Philomatique, Paris 99-100, Oeuvres 2, pp 315–319Google Scholar
  8. Fourier J (1827) (Extract from) Analyse des travaux de l’Académie Royale des Sciences, pendant l’année 1824. Partie mathématique. Histoire l’Académie Royale des Sciences 7:xlvii–lvGoogle Scholar
  9. Frank M, Wolfe P (1956) An algorithm for quadratic programming. Nav Res Logistics Q 3(1 and 2):95–110CrossRefGoogle Scholar
  10. Gale D, Stewart F (1953) Infinite games with perfect information. In: Kuhn H, Tucker A (eds) Contributions to the theory of games, vol II. Annals of Mathematics Studies Number 28. Princeton University Press, Princeton, NJ, pp 245–266Google Scholar
  11. Gilmore P, Gomory R (1961) A linear programming approach to the cutting stock problem. Oper Res 9(6):849–859CrossRefGoogle Scholar
  12. Gilmore P, Gomory R (1963) A linear programming approach to the cutting stock problem -- part II. Oper Res 11(6):863–888CrossRefGoogle Scholar
  13. Gomory R (1958) Outline of an algorithm for integer solutions to linear programs. Bull Am Math Soc 64(5):1958CrossRefGoogle Scholar
  14. Gomory R (1963) An algorithm for integer solutions to linear programs. In: Graves R, Wolfe P (eds) Recent advances in mathematical programming. McGraw Hill, New York, NY, pp 269–302Google Scholar
  15. Grattan-Guinness I (1970) Joseph Fourier’s anticipation of linear programming. Oper Res Q 21(3):361–364CrossRefGoogle Scholar
  16. Hitchcock F (1941) The distribution of a product from several sources to numerous localities. J Math Phys 20:224–230Google Scholar
  17. Hoffman A (1953) Cycling in the simplex method. National Bureau of Standards Report, No. 2874, December 16, Washington, DCGoogle Scholar
  18. Khachiyan LG (1979) A polynomial algorithm in linear programming (in Russian). Doklady Akedamii Nauk SSR 244:1093–1096. [English translation: 1979. Soviet Mathematics Doklady 20:191–194]Google Scholar
  19. Locke E (1949) The Finan-seer. Astounding Science Fiction (October)Google Scholar
  20. Lustig I (2001)Interview with Phil Wolfe (text and video). http://www.e-optimization.com/directory/trailblazers/wolfe. Accessed 2 Oct 2010
  21. Mapstone R (1972) Interview with Philip Wolfe. Computer oral history collection, 1969–1973, 1977. Archives Center, Smithsonian National Museum of American History, Washington, DC. http://invention.smithsonian.org/downloads/fa_cohc_tr_wolf721128.pdf. Accessed 6 May 2009)Google Scholar
  22. Markowitz H (1956) The optimization of a quadratic function subject to linear constraints. Nav Res Logistics Q 3(1 and 2):111–133CrossRefGoogle Scholar
  23. Micchelli CA (ed) (2003) Selected papers of Alan J. Hoffman with commentary. World Scientific, River Edge, NJGoogle Scholar
  24. New York Times (1979) A Soviet discovery rocks world of mathematics. November 7, 1Google Scholar
  25. Sion M, Wolfe P (1957) On a game without a value. In: Dresher M, Tucker A, Wolfe P (eds) Contributions to the theory of games, vol III. Annals of Mathematics Studies Number 39. Princeton University Press, Princeton, NJ, pp 299–306Google Scholar
  26. Spielberg K (2007) IP over 40+ years at IBM scientific centers and marketing. Ann Oper Res 149(1):195–208CrossRefGoogle Scholar
  27. Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton, NJ (2nd edn, 1947; 3rd edn, 1953)Google Scholar
  28. Wolfe P (1956) Determinateness of polyhedral games. In: Kuhn H, Tucker A (eds) Linear inequalities and related systems. Annals of Mathematics Studies Number 38. Princeton University Press, Princeton, NJ, pp 195–198Google Scholar
  29. Wolfe P (1961) Accelerating the cutting plane method for nonlinear programming. J Soc Ind Appl Math 9(3):481–488CrossRefGoogle Scholar
  30. Wolfe P (1963a) A technique for resolving degeneracy in linear programming. J Soc Ind Appl Math 11(2):205–211CrossRefGoogle Scholar
  31. Wolfe P (1963b) Methods of nonlinear programming. In: Graves R, Wolfe P (eds) Recent advances in mathematical programming. McGraw-Hill, New York, NY, pp 67–86Google Scholar
  32. Wolfe P (1966) On the convergence of gradient methods under constraints. Report RZ-204. IBM T. J. Watson Research Center, Yorktown Heights, New York, NYGoogle Scholar
  33. Wolfe P (1967) Methods of nonlinear programming. In: Abadie J (ed) Nonlinear programming. North-Holland, Amsterdam, pp 97–131Google Scholar
  34. Wolfe P (1969) Convergence conditions for ascent methods. SIAM Rev 11(2):226–235CrossRefGoogle Scholar
  35. Wolfe P (1970) Convergence theory in non-linear programming. In: Abadie J (ed) Integer and non-linear programming. North Holland, Amsterdam, pp 1–36Google Scholar
  36. Wolfe P (1971) Convergence conditions for ascent methods, II: some corrections. SIAM Rev 13(2):185–188CrossRefGoogle Scholar
  37. Wolfe P (1974) Note on a method of conjugate subgradients for minimizing nondifferentiable functions. Math Program 7(1):380–383CrossRefGoogle Scholar
  38. Wolfe P (2009) Personal communicationGoogle Scholar
  39. Wolfe P, Cutler L (1963) Experiments in linear programming. In: Graves R, Wolfe P (1963) (eds) Recent advances in mathematical programming. McGraw-Hill, New York, NY, pp 177–200Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alan J. Hoffman
    • 1
  1. 1.IBM

Personalised recommendations