Quaternion Algebras with the Same Subfields

  • Skip GaribaldiEmail author
  • David J. Saltman
Part of the Developments in Mathematics book series (DEVM, volume 18)


Prasad and Rapinchuk asked if two quaternion divisionF-algebras that have the same subfields are necessarily isomorphic. The answer is known to be “no” for some very large fields. We prove that the answer is “yes” if F is an extension of a global field K so that FK is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields.


Division Algebra Quadratic Extension Quaternion Algebra Linear Algebraic Group Discrete Valuation Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.
    J.Kr. Arason, Primideale im graduierten Wittring und im mod 2 Cohomologiering, Math. Z. 145 (1975), 139–143.Google Scholar
  2. B.
    N.Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation.Google Scholar
  3. CTW.
    M.Chacron, J.-P. Tignol, and A.R. Wadsworth, Tractable fields, Can. J. Math. 51 (1999), no.1, 10–25.zbMATHMathSciNetGoogle Scholar
  4. D.
    P.K. Draxl, Skew fields, Lond. Math.Soc.Lecture Note Series, vol.81, Cambridge University Press, Cambridge-New York, 1983.Google Scholar
  5. EP.
    A.J. Engler and A.Prestel, Valued fields, Springer, Berlin, 2005.zbMATHGoogle Scholar
  6. Gi.
    P. Gille, Le problème de Kneser-Tits, Astérisque 326 (2009), 39–82.Google Scholar
  7. GMS.
    S.Garibaldi, A.Merkurjev, and J-P. Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol.28, Am.Math.Soc., 2003.Google Scholar
  8. GP.
    S.Garibaldi and H.P. Petersson, Wild Pfister forms over Henselian fields, K-theory, and conic division algebras, arxiv:1002.3280v1, 2010.Google Scholar
  9. Han.
    I.Han, Tractability of algebraic function fields in one variable of genus zero over global fields, J. Algebra 244 (2001), no., 217–235.zbMATHCrossRefMathSciNetGoogle Scholar
  10. JW.
    B.Jacob and A.Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126–179.zbMATHCrossRefMathSciNetGoogle Scholar
  11. KMRT.
    M.-A. Knus, A.S. Merkurjev, M.Rost, and J.-P. Tignol, The book of involutions, Colloquium Publications, vol.44, Am.Math.Soc., 1998.Google Scholar
  12. Lam80.
    T.Y. Lam, The theory of ordered fields, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), Lecture Notes in Pure and Appl. Math., vol.55, Dekker, New York, 1980, pp.1–152.Google Scholar
  13. Lam05.
    T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol.7, Am. Math. Soc., Providence, RI, 2005.Google Scholar
  14. M.
    A.Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. 78 (2008), no. 2, 51–64.zbMATHCrossRefMathSciNetGoogle Scholar
  15. NSW.
    J.Neukirch, A.Schmidt, and K.Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der math. Wissenschaften, vol. 323, Springer, Berlin, 2008.Google Scholar
  16. PR.
    G.Prasad and A.S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Pub. Math. IHES 109 (2009), 113–184.zbMATHCrossRefMathSciNetGoogle Scholar
  17. R.
    I.Reiner, Maximal orders, LMS Monographs, vol.5, Academic Press, London, 1975.Google Scholar
  18. Sa.
    D.J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol.4, American Mathematical Society, Providence, RI, 1999.Google Scholar
  19. Se.
    J-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 2002, originally published as Cohomologie galoisienne (1965).Google Scholar
  20. T.
    J.-P. Tignol, Classification of wild cyclic field extensions and division algebras of prime degree over a Henselian field, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., vol. 131, Am. Math. Soc., 1992, pp.491–508.Google Scholar
  21. W.
    A.R. Wadsworth, Valuation theory on finite dimensional division algebras, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., vol.32, Am. Math. Soc., Providence, RI, 2002, pp.385–449.Google Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Center for Communications Research-PrincetonPrincetonUSA

Personalised recommendations